
50003
Models of Computation
Imperial College London



Contents

1 Introduction 3
1.1 Course Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Decision Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Hilbert’s Entscheidungsproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Algorithms Informally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 The Halting Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Algorithms as Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.4 Haskell Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Program Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 While Language 9
2.1 SimpleExp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Big-Step Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Small Step Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 While . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Normalising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.7 Side Effecting Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.8 Short Circuit Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.9 Strictness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.10 Complex Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Structural Induction 20
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Induction over SimpleExp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Many Steps of Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Multi-Step Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Confluence of Small Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Determinacy of Small Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Multi-Step Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Connecting ⇓ and →∗ for SimpleExp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.4 Multi-Step Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.5 Determinacy of → for Exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.6 Syntax of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.7 Connecting ⇓ and →∗ for While . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



4 Register Machines 29
4.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Register Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Partial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Computable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Encoding Programs as Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.3 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.4 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Analysing Register Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.2 Creating Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.3 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Universal Register Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Halting Problem 43
5.1 Halting Problem for Register Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Computable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Enumerating the Computable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Uncomputable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.3 Undecidable Set of Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Turing Machines 46
6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Turing → Register Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Lambda Calculus 50
7.1 Lambda Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2.1 Bound and Free Formally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2.2 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3.1 Multi-Step Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3.2 Reduction Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3.3 Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.4 Encoding Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4.1 Encoding Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4.2 Encoding Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4.3 Encoding Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4.4 Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4.5 Conditional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4.6 Successor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4.7 Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4.8 Predecessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4.9 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5 Combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Credit 57

2



Chapter 1

Introduction

1.1 Course Structure

Dr Azelea Raad

First Half

� The while language

� Big & small step semantics

� Structural induction

Dr Herbert Wiklicky

Second Half

� Register Machines & gadgets

� Turing Machines

� Lambda Calculus

1.2 Algorithms

Euclid’s Algorithm Extra Fun! 1.2.1

Algorithm to find the greatest common divisor published by greek mathematician Euclid in ≈ 300 B.C.

-- continually take the modulus and compare until the modulus is zero

euclidGCD :: Int -> Int -> Int

euclidGCD a b

| b == 0 = a

| otherwise = euclidGCD b (a `mod` b)
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Sieve of Eratosthenes Extra Fun! 1.2.2

Used to find the prime numbers within a limit. Done by starting from the 2, adding the number to the
primes, marking all multiples as non-prime, then repeating progressing to the next non-marked number (a
prime) and repeating.

The sieve is attributed to Eratosthenes of Cyrene and was first published ≈ 200 B.C.

-- Filtering rather than marking elements

eraSieve :: Int -> [Int]

eraSieve lim = eraSieveHelper [2..lim]

where

eraSieveHelper :: [Int] -> [Int]

eraSieveHelper (x:xs) = x:eraSieveHelper (filter (\n -> n `mod` x /= 0) xs)

eraSieveHelper [] = []

Al-Khwarizmi Extra Fun! 1.2.3

A persian polymath who first presented systematic solutions to linear and quadratic equations (by completing
the square). He pioneered the treatment of algebra as an independent discipline within mathematics and
introduced foundational methods such as the notion of balancing & reducing equal equations (e.g subtract/-
cancel the same algebraic term from both sides of an equation)

His book title Q�. m.Ì'@ ”al-jabr” resulted in the word algebra and subsequently algorithm.

Algorithms predate the computer, and have been studied in a mathematical/logical context for centuries.

� Very early attempts such as the Antikythera Mechanism (an analogue calculator for determining astronomical
positions) ≈ 100 B.C.

� Simple configurable machines (e.g automatic looms, pianola, census tabulating machines) invented in the 1800s.

� Basic calculation devices such as Charles Babbage’s Difference Engine further generalised the idea of a calcu-
lating machine with a sequence of operations, and rudimentary memory store.

� Babbage’s Analytical Engine is generally considered the world’s first digital computer design, but was not fully
implemented due to the limits of precision engineering at the time.

� English mathematician Ada Lovelace writes the first ever computer program (to calculate bernoulli numbers)
on Babbage’s analytical engine.
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Note G Extra Fun! 1.2.4

While translating a french transcript of a lecture given by Charles Babbage at the University of Turin on
his analytical engine, Ada Lovelace added several notes (A-G), with the last including a description of an
algorithm to compute the Bernoulli numbers.

This is the known example of a computer program.

Babbage’s Machines Extra Fun! 1.2.5

The Difference Engine was used as the basis for designing the fully programmable Analytical Engine.

� Held back by lack of funds, limitations of precision machining at the time.

� Contains an ALU for arithmetic operations, supports conditional branches and has a memory

� Part of the machine (including a printing mechanism) are on display at the science museum.

1.3 Decision Problems

Formulas Definition 1.3.1

Well formed logical statements that are a sequence of symbols form a given formal language. e.g (p ∨ q) ∧ i
is a formula, but ) ∨ ∧ji is not.

Given:

� A set S of finite data structures of some kind (e.g formulae in first order logic).

� A property P of elements of S (e.g the property of a formula that it has a proof).

The associated decision procedure is:

Find an algorithm such that for any s ∈ S, if s has property P the algorithm terminates with 1, otherwise with 0.

1.3.1 Hilbert’s Entscheidungsproblem

Is there an algorithm which can take any statement in first-order logic, and determine in a finite number
of steps if the statement is provable?
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First Order Logic/Predicate Logic Definition 1.3.2

An extension of propositional logic that includes quanifiers (∀,∃), equality, function symbols (e.g ×,÷,+,−)
and structured formulas (predicate functions).

This problem was originally presented in a more ambiguous form, using a logic system more powerful than first-order
logic.

’Entscheidungsproblem’ means ’decision problem’

Many tried to solve the problem, without success. One strategy was to try and disprove that such an algorithm can
exist. In order to answer this question properly a formal definition of algorithm was required.

1.4 Algorithms

1.4.1 Algorithms Informally

Common features of Algorithms:

Finite Description of the procedure in terms of elementary operations.
Deterministic If there is a next step, it is uniquely determined - that is on the same data, the same steps

will be made.
Terminate? Procedure may not terminate on some input data, however we can recognize when it termi-

nates and what the result is.

In 1935/35, Alan Turing (Cambridge) and Church (Princeton) independently gave negative soltuions to Hilberts
Entscheidungsproblem (showed such an algorithm could not exist).

1. They gave concrete/precise definitions of what algorithms are (Turing Machines & Lambda Calculus).

2. They regarded algorithms as data, on which other algorithms could act.

3. They reduced the problem to the Halting problem.

This work led to the Church-Turing Thesis, that shows everything computable is computed by a Turing Machine.
Church’s Thesis extended this to show that General Recurisve Functions were the same type as those expressed by
lambda calculus, and Turning showed that lambda calculus and the turning machine were equivalent.

Algorithms Formalised

Any formal definition of an algorithm should be:

Precise No ambiguities, no implicit assumptions, Should be phrased mathematically.
Simple No unnecessary details, only the few axioms required. Makes it easier to reason about.
General So all algorithms and types of algorithms are covered.

1.4.2 The Halting Problem

The Halting problem is a decision problem with:

� The set of all pairs (A,D) such that A is an algorithm, and D is some input datum on which the algorithm
operates.

� The property A(D) ↓ holds for (A,D) ∈ S if algorithm A when applied to D eventually produces a result
(halts).

Turning and Church showed that there is no algorithm such that:

∀(A,D) ∈ S

[
H(A,D) = 1 A(D) ↓

0 otherwise

]
The final step for Turing/Church’s proof was to construct an algorithm encoding instances (A,D) of the halting
problem as statements such that:

ΦA,D is provable ↔ A(D) ↓
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1.4.3 Algorithms as Functions

It is possible to give a mathematical description of a computable function as a special function between special sets.

In the 1960s Strachey & Scott (Oxford) introduced denotational semantics, which describes the meaning (deno-
tation) of an algorithm as a function that maps input to output.

Domains Definition 1.4.1

Domains are special kinds of partially ordered sets. Partial orders meaning there is an order of elements in
the set, but not every element is comparable.

Partial orders are reflexive, transitive and anti-symmetric. You can easily represent them on a Hasse
Diagram.

Scott solved the most difficult part, considering recursively defined algorithms as continuous functions between
domains.

1.4.4 Haskell Programs

Example using a basic implementation of power.

-- Precondition: n >= 0

power :: Integer -> Integer -> Integer

power x 0 = 1

power x n = x * power x (n-1)

-- Precondition: n >= 0

power' :: Integer -> Integer -> Integer

power' x 0 = 1

power' x n

| even n = k2

| odd n = x * k2

where

k = power' x (n `div` 2)

k2 = k * k

O(n)
power 7 5
⇝ 7 * (power 7 4)
⇝ 7 * ( 7 * (power 7 3))
⇝ 7 * ( 7 * (7 * (power 7 2)))
⇝ 7 * ( 7 * (7 * (7 * (power 7 1))))
⇝ 7 * ( 7 * (7 * (7 * (7 * (power 7 0)))))
⇝ 7 * ( 7 * (7 * (7 * (7 * 1))))
⇝ 16807

O(log(n)) steps
power’ 7 5
⇝ 7 * (power’ 7 2)2̂
⇝ 7 * ((power’ 7 1)2̂)2̂
⇝ 7 * ((7 * (power’ 7 0)2̂)2̂)2̂
⇝ 7 * ((7 * (1)2̂)2̂)2̂
⇝ 16807

These two functions are equivalent in result however operate differently (one much faster than the other).
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1.5 Program Semantics

Denotational Semantics Definition 1.5.1

� A program’s meaning is described computationally using denotations (mathematical objects)

� A denotation of a program phrase is built from its sub-phrases.

Operational Semantics Definition 1.5.2

Program’s meaning is given in terms of the steps taken to make it run.

60007 - The Theory and Practice of Concurrent Programming Extra Fun! 1.5.1

The third-year concurrency module uses both operational and denotational semantics to reason about the
correctness of concurrent programs, and possible executions under different memory models (see notes here).

There are also axiomatic semantics and declarative semantics but we will not cover them here.
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Chapter 2

While Language

2.1 SimpleExp

We can define a simple expression language (SimpleExp) to work on:
E ∈ SimpleExp ::= n | E + E | E × E | . . .

We want semantics that are the same as we would expect in typical mathematics notation

Small-Set/Structural Definition 2.1.1

Gives a method for evaluating an expression step-
by-step.

E → E′

Big-Step/Natural Definition 2.1.2

Ignores intermediate steps and gives result imme-
diately.

E ⇓ n

We need big to define big and small step semantics for SimpleExp to describe this, and have those semantics conform
to several properties listed.

2.1.1 Big-Step Semantics

Rules

(B-NUM)
n ⇓ n

(B-ADD)
E1 ⇓ n1 E2 ⇓ n2

E1 + E2 ⇓ n3
n3 = n1 + n2

We can similarly define multiplication, subtraction etc.

Properties

Determinacy Definition 2.1.3

∀E,n1, n2. [E ⇓ n1 ∧ E ⇓ n2 ⇒ n1 = n2]

Expression evaluation is deterministic (only one re-
sult possible).

Totality Definition 2.1.4

∀E. ∃n. [E ⇓ n]

Every expression evaluates to something.

Break it! Example Question 2.1.1

We introduce a subtraction operator with big step rule:

(B-SUB)
E1 ⇓ n1 E2 ⇓ n2

E1 − E2 ⇓ n3
n3 = n1 − n2

What properties of simpleExp does this break? How could this be resolved.

It breaks totality as we specify n ∈ N, hence n ≥ 0.

for example (?)

(B-NUM)
3 ⇓ 3

(B-NUM)
4 ⇓ 4

3− 4 ⇓?
We could fix this by:

� Changing the set of n to include negative numbers
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� Use saturating arithmetic, and fix negative subtraction to zero by modifying the B-SUB rule to have
n3 = n1 − n2 where n1 ≥ n2, and introducing a new saturated arithmetic rule for n1 < n2.

� Add a new result value to represent a non-number/underflow. n ∈ N ∪ {Nan} and set negative results
to NaN

Now it all adds up! Example Question 2.1.2

Show that 3 + (2 + 1) ⇓ 6 using the provided rules.

We can hence create the derivation:

(B-ADD)

(B-NUM)
3 ⇓ 3

(B-ADD)

(B-NUM)
2 ⇓ 2

(B-NUM)
1 ⇓ 1

2 + 1 ⇓ 3

3 + (2 + 1) ⇓ 6

C Semantics & Short Circuiting in Big-Step Example Question 2.1.3

In this module short-circuiting and side-effects have been kept separate, however this typically not the case
(expressions with assignment, using results of functions in expressions).

int main() {

bool a = false;

bool b = true || (a = true);

// a is false, b is true

}

Create basic big-step operational semantics rules for an extension to SimpleExp boolean expressions that
contains:

� Assignments in expressions B ::= x | B ∨ B | B ∧ B | ¬B | x := B where x is a variable identifier
x ∈ V ar, assignment evaluates to the assigned value.

� A variable store s (V ar ⇀ {true, false}), much like the While language.

� A big-step derivation rule of form ⟨B, s⟩ ⇓b ⟨s′, b⟩ (program and store → final store and expression
value).

We want determinacy and totality to be preserved, provide a suggestion of a rule that could be added to your
solution to break either.

(B-BOOL)
⟨b, s⟩ ⇓ ⟨s, b⟩

(B-NEG-FALSE)
⟨B, s⟩ ⇓b ⟨s′, false⟩
⟨¬B, s⟩ ⇓ ⟨s′, true⟩

(B-NEG-TRUE)
⟨B, s⟩ ⇓b ⟨s′, true⟩
⟨¬B, s⟩ ⇓ ⟨s′, false⟩

(OR-SC)
⟨B1, s⟩ ⇓b ⟨s′, true⟩

⟨B1 ∨B2, s⟩∨ ⇓ ⟨s′, true⟩
(OR-EXH)

⟨B1, s⟩ ⇓b ⟨s′′, false⟩ ⟨B2, s
′′⟩ ⇓b ⟨s′, b⟩

⟨B1 ∨B2, s⟩ ⇓ ⟨s′, b⟩

(AND-SC)
⟨B1, s⟩ ⇓b ⟨s′, false⟩

⟨B1 ∧B2, s⟩ ⇓ ⟨s′, false⟩
(AND-EXH)

⟨B1, s⟩ ⇓b ⟨s′′, true⟩ ⟨B2, s
′′⟩ ⇓b ⟨s′, b⟩

⟨B1 ∧B2, s⟩ ⇓ ⟨s′, b⟩

(ASSIGN)
⟨B, s⟩ ⇓b ⟨s′′, b⟩ s′ = [x 7→ b]

⟨x := B, s⟩ ⇓ ⟨s′, b⟩
Hence we can now create derivations such as:

bool x;

(x = true) || (x = false);

(OR-SC)

(ASSIGN)

(B-BOOL)
true ⇓ true

(x 7→ true) = ()[x 7→ true]

⟨x := true, ()⟩ ⇓ ⟨(x 7→ true), true⟩
⟨(x := true) ∨ (x := false), ()⟩ ⇓ ⟨(x 7→ true), true⟩

We can break determinacy by adding short-circuiting rules for the right hand side (e.g b ∨ true ⇓ true) of ∨
and ∧.
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Q1a - 2021/22 Exam Question 2.1.1

Consider the language GOTO, comprising of the standard expressions E, boolean expressions B and the
following commands (where i, j ∈ N are natural numbers):

C ::= exit | x := E | goto(i) | goto(B, i, j)

A GOTO program P ∈ Prog is a map of numbers to commands:

P ∈ PROG
def
= N → CMD where commands, C ∈ CMD is defined as above

Given a GOTO program P , P (0) denotes the first command of P , P (1) dnotes the second command of P ,
and so forth.

Using big-step operational semantics the expressions and booleans are evaluated against a (variable)
store s as usual, and their evaluation is simplified so that the sore does not change.

⟨E, s⟩ ⇓e n where n ∈ N ⟨B, s⟩ ⇓b b where b ∈ {true, false}

Programs are also evaluated using a big-step operational semantics against a store s and the program counter
pc ∈ N resulting in another store s′ and a positive natural number k ∈ N+. That is the GOTO big-step
operational semantics rules, given below are of form:

⟨P, s, pc⟩ ⇓ ⟨s′, k⟩

The rules are:

(EXIT)
P (pc) = exit

⟨P, s, pc⟩ ⇓ ⟨s, 1⟩
(JUMP)

P (pc) = goto(i) ⟨P, s, i⟩ ⇓ ⟨s′, k⟩
⟨P, s, pc⟩ ⇓ ⟨s′, k + 1⟩

(ASSIGN)
P (pc) = x := E ⟨E, s⟩ ⇓e n ⟨P, s[x 7→ n], pc+ 1⟩ ⇓ ⟨s′, k⟩

⟨P, s, pc⟩ ⇓ ⟨s′, k + 1⟩

(BRANCH-TRUE)
P (pc) = goto(B, i, j) ⟨B, s⟩ ⇓e true ⟨P, s, i⟩ ⇓ ⟨s′k⟩

⟨P, s, pc⟩ ⇓ ⟨s′, k + 1⟩

(BRANCH-FALSE)
P (pc) = goto(B, i, j) ⟨B, s⟩ ⇓e false ⟨P, s, j⟩ ⇓ ⟨s′k⟩

⟨P, s, pc⟩ ⇓ ⟨s′, k + 1⟩
Consider a program P with three instructions:

P (0) = x := x+ 1

P (1) = goto(x > 0, 2, 0)

P (2) = exit

i) Give a derivation for ⟨P, s0, 0⟩ ⇓ ⟨s1, 3⟩ with s0 = [x 7→ 0] and s1 = [x 7→ 1].

You may evaluate expressions and booleans directly without showing their derivation trees.

ii) Explain in words what k denotes when ⟨P, s, pc⟩ ⇓ ⟨s′, k⟩.

iii) Explain in words the behaviour of the goto(i) and goto(B, i, j) commands.

iv) Define goto(i) in terms of the other GOTO commands. You may use any GOTO command except
goto(i) in your definition.

Q1a - 2020/21 Exam Question 2.1.2

Consider the language NONDET comprising the standard expressions E, boolean expressions B, and the
following commands.

C ::= skip | x := E | assume B | or(C,C) | loop(C) | C;C

Using a big-step operational semantics, the expressions and booleans are evaluated against a variable store s,
and their evaluation is simplified so that the store does not change:

⟨E, s⟩ ⇓e where n ∈ N ⟨B, s⟩ ⇓b b where b ∈ {true, false}

Commands are also evaluated using a big-step operational semantics, against a variable store s, resulting in
a new store s′. The big-step operational semantics rules of NONDET are given below:

(SKIP)
⟨skip, s⟩ ⇓ s

(ASSIGN)
⟨E, s⟩ ⇓e n s[x 7→ n] = s′

⟨x := E, s⟩ ⇓ s′
(ASSUME)

⟨B, s⟩ ⇓b true

⟨assume B, s ⇓ s

11



(OR-LEFT)
⟨C1, s⟩ ⇓ s′

⟨or(C1, C2), s⟩ ⇓ s′
(OR-RIGHT)

⟨C2, s⟩ ⇓ s′

⟨or(C1, C2), s⟩ ⇓ s′

(LOOP-ITER)
⟨C, s⟩ ⇓ s′′ ⟨loop(C), s′′⟩ ⇓ s′

⟨loop(C), s⟩ ⇓ s′
(LOOP-EXIT)

⟨loop(C), s⟩ ⇓ s

(SEQ)
⟨C1, s⟩ ⇓ s′′ ⟨C2, s

′′⟩ ⇓ s′

⟨C1;C2, s⟩ ⇓ s′

i) Give the derivation tree corresponding to the the big-step derivation ⟨C, s0⟩ ⇓ s2 where:

C = loop(x := x+ 1) s0 = [x 7→ 0] s2 = [x 7→ 2]

You may evaluate expressions and booleans directly, without showing their derivation trees.

ii) Explain in words the behaviour of the loop command.

iii) Let ⟨C, s0⟩ ⇓ s′ for some store s′ where C and s0 are defined as in part i.

What are the possible values of x in s′? Justify your answer in words.

2.1.2 Small Step Semantics

Given a relation → we can define a its transitive closure →∗ such that:
E →∗ E′ ⇔ E = E′ ∨ ∃E1, E2, . . . , Ek. [E → E1 → E2 → · · · → Ek → E′]

Rules

(S-ADD)
n1 + n2 → n3

n3 = n1 + n2

(S-LEFT)
E1 → E′

1

E1 + E2 → E′
1 + E2

(S-RIGHT)
E → E′

n+ E → n+ E′

Here we define + as a left-associative operator.

Normal Form Definition 2.1.5

E is in its normal form (irreducable) if there is no E′ such that E → E′

In SimpleExp the normal form is the natural numbers.

Properties

Confluence Definition 2.1.6

∀E,E1, E2. [E →∗ E1 ∧ E →∗ E2 ⇒ ∃E′. [E1 →∗ E′ ∧ E2 → ∗E′]]

Determinate → Confluent
There are several evaluations paths, but they all get the same end result.

Determinacy Definition 2.1.7

∀E,E1, E2. [E → E1 ∧ E → E2 ⇒ E1 = E2]

There is at most one next possible step/rule to
apply.

Strong Normalisation Definition 2.1.8

There are no infinite sequences of expressions, all
sequences are finite.

Weak Normalisation Definition 2.1.9

∀E. ∃k. ∃n. [E →k n]

There is some finite sequence of expressions (to
normalize) for any expression.

Unique Normal Form Definition 2.1.10

∀E,n1, n2. [E →∗ n1 ∧ E → n2 ⇒ n1 = n2]

12



To be determined. . . Example Question 2.1.4

Add a rule to break determinacy without breaking confluence.

(S-RIGHT-E)
E2 → E′

2

E1 + E2 → E1 + E′
2

As we can now choose which side to reduce first (S-LEFT or S-RIGHT-E), we have lost determinacy, however
we retain confluence.

Q1b - 2020/21 Exam Question 2.1.3

. . . continued from Q1a - 2020/21

Give the small-step operational semantics rules for or(C1, C2) and loop(C).

2.2 While

2.2.1 Syntax

We can define a simple while language (if, else, while loops) to build programs from & to analyse.

B ∈ Bool ::= true|false|E = E|E < E|B&B|¬B . . .
E ∈ Exp ::= x|n|E + E|E × E| . . .
C ∈ Com ::= x := E|if B then C else C|C;C|skip|while B do C

Where x ∈ V ar ranges over variable identifiers, and n ∈ N ranges over natural numbers.

2.2.2 States

Partial Function Definition 2.2.1

A mapping of every member of its domain, to at most one member of its codomain.

A state is a partial function from variables to numbers (partial function as only defined for some variables). For
state s, and variable x, s(x) is defined, e.g:

s = (x 7→ 2, y 7→ 200, z 7→ 20)

(In the current state, x = 2, y = 200, z = 20).
For example:

s[x 7→ 7](u) = 7 if u = x
= s(u) otherwise

The small-step semantics of While are defined using configurations of form:
⟨E, s⟩, ⟨B, s⟩, ⟨C, s⟩

(Evaluating E, B, or C with respect to state s)

We can create a new state, where variable x equals value a, from an existing state s:

s′(u) ≜ α(x) =

{
a u = x

s(u) otherwise

s′ = s[x 7→ u] is equivalent to dom(s′) = dom(s) ∧ ∀y.[y ̸= x → s(y) = s′(y) ∧ s′(x) = a]

(s′ equals s where x maps to a)
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2.2.3 Rules

Expressions

(W-EXP.LEFT)
⟨E1, s⟩ →e ⟨E′

1, s
′⟩

⟨E1 + E2, s⟩ →e ⟨E′
1 + E2, s′⟩

(W-EXP.RIGHT)
⟨E, s⟩ →e ⟨E′, s′⟩

⟨n+ E, s⟩ →e ⟨n+ E′, s′⟩

(W-EXP.VAR)
⟨x, s⟩ →e ⟨n, s⟩

s(x) = n (W-EXP.ADD)
⟨n1 + n2, s⟩

⟨n3, s⟩n3 = n1 + n2

These rules allow for side effects, despite the While language being side effect free in expression evaluation. We show
this by changing state s →e s

′.

We can show inductively (from the base cases W-EXP.VAR and W-EXP.ADD) that expression evaluation is side
effect free.

Booleans

(Based on expressions, one can create the same for booleans) (b ∈ {true, false})

(W-BOOL.AND.LEFT)
⟨B1, s⟩ →b ⟨B′

1, s
′⟩

⟨B1&B2, s⟩ →b ⟨B′
1&B2, s′⟩

(W-BOOL.AND.RIGHT)
⟨B, s⟩ →b ⟨B′, s′⟩

⟨b&B2, s⟩ →b ⟨b&B′, s′⟩

(W-BOOL.AND.TRUE)
⟨true&true, s⟩ →b ⟨true, s⟩

(W-BOOL.AND.FALSE)
⟨false&b, s⟩ →b ⟨true, s⟩

(Notice we do not short circuit, as the right arm may change the state. In a side effect free language, we could.)

(W-BOOL.EQUAL.LEFT)
⟨E1, s⟩ →e ⟨E′

1, s
′⟩

⟨E1 = E2, s⟩ →b ⟨E′
1 = E2, s′⟩

(W-BOOL.EQUAL.RIGHT)
⟨E, s⟩ →e ⟨E′, s′⟩

⟨n = E, s⟩ →b ⟨n = E, s′⟩

(W-BOOL.EQUAL.TRUE)
⟨n1 = n2, s⟩ →b ⟨true, s⟩

n1 = n2 (W-BOOL.EQUAL.FALSE)
⟨n1 = n2, s⟩ →b ⟨false, s⟩

n1 ̸= n2

(W-BOOL.LESS.LEFT)
⟨E1, s⟩ →e ⟨E′

1, s
′⟩

⟨E1 < E2, s⟩ →b ⟨E′
1 < E2, s′⟩

(W-BOOL.LESS.RIGHT)
⟨E, s⟩ →e ⟨E′, s′⟩

⟨n < E, s⟩ →b ⟨n < E, s′⟩

(W-BOOL.LESS.TRUE)
⟨n1 < n2, s⟩ →b ⟨true, s⟩

n1 < n2 (W-BOOL.EQUAL.FALSE)
⟨n1 < n2, s⟩ →b ⟨false, s⟩

n1 ≥ n2

(W-BOOL.NOT)
⟨¬true, s⟩ →b ⟨false, s⟩

(W-BOOL.NOT)
⟨¬false, s⟩ →b ⟨true, s⟩

Assignment

(W-ASS.EXP)
⟨E, s⟩ →e ⟨E′, s′⟩

⟨x := E, s⟩ →c ⟨x := E′, s′⟩
(W-ASS.NUM)

⟨x := n, s⟩ →c ⟨skip, s[x 7→ n]⟩

Sequential Composition

(W-SEQ.LEFT)
⟨C1, s⟩ →c ⟨C ′

1, s
′⟩

⟨C1;C2, s⟩ →c ⟨C ′
1;C2, s′⟩

(W-SEQ.SKIP)
⟨skip;C, s⟩ →c ⟨C, s⟩

Conditionals

(W-COND.TRUE)
⟨if true then C1 else C2, s⟩ →c ⟨C1, s⟩

(W-COND.FALSE)
⟨if false then C1 else C2, s⟩ →c ⟨C2, s⟩

(W-COND.BEXP)
⟨B, s⟩ →b ⟨B′, s′⟩

⟨if B then C1 else C2, s⟩ →c ⟨if B′ then C1 else C2, s′⟩

While

(W-WHILE)
⟨while B do C, s⟩ →c ⟨if B then (C; while B do C) else skip, s⟩

Q1b - 2021/22 Exam Question 2.2.1

. . . continued from Q1a - 2021/22
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We can similarly define the small-step operational semantics of GOTO programs to be of the form
P, s, pc → P, s′, pc′ where s and pc are the starting store and program counter, and s′ and pc′ are the resulting
store and program counter. For instance, for x := E we have:

(ASSIGN)
P (pc) = x := E ⟨E, s⟩ ⇓e n s′ = [x 7→ n] pc′ = pc+ 1

P, s, pc → P, s′, pc′

Note that for simplicity we use the big-step evaluation of expressions in the premise above. You may use big
step evaluation rules for expressions (including booleans) in your answer.

Give the small-step operational semantics rules for goto(i) and goto(B, i, j).

2.2.4 Properties

The execution relation (→c) is deterministic.
∀C,C1, C2 ∈ Com∀s, s1, s2.[⟨C, s⟩ →c ⟨C1, s1⟩ ∧ ⟨C, s⟩ →c ⟨C2, s2⟩ → ⟨C1, s1⟩ = ⟨C2, s2⟩]

Hence the relation is also confluent:
∀C,C1, C2 ∈ Com∀s, s1, s2.[⟨C, s⟩ →c ⟨C1, s1⟩ ∧ ⟨C, s⟩ →c ⟨C2, s2⟩ →

∃C ′ ∈ Com, s′.[⟨C1, s1⟩ →c ⟨C ′, s′⟩ ∧ ⟨C2, s2⟩ →c ⟨C ′, s′⟩]]

Both also hold for →e and →b.

2.2.5 Configurations

Answer Configuration

A configuration ⟨skip, s⟩ is an answer configuration. As there is no rule to execute skip, it is a normal form.
¬∃C ∈ Com, s, s′.[⟨skip, s⟩ →c ⟨C, s′⟩]

For booleans ⟨true, s⟩ and ⟨false, s⟩ are answer configurations, and for expressions ⟨n, s⟩.

Stuck Configurations

A configuration that cannot be evaluated to a normal form is called a suck configuration.
⟨y, (x 7→ 3)⟩

Note that a configuration that leads to a stuck configuration is not itself stuck.
⟨5 < y, (x 7→ 2)⟩

(Not stuck, but reduces to a stuck state)

2.2.6 Normalising

The relations →b and →e are normalising, but →c is not as it may not have a normal form.
while true do skip

⟨while true do skip, s⟩ →3
c ⟨while true do skip, s⟩

(→3
c means 3 steps, as we have gone through more than one to get the same configuration, it is an infinite loop)

2.2.7 Side Effecting Expressions

If we allow programs such as:
do x := x+ 1 return x

(do x := x+ 1 return x) + (do x := x× 1 return x)

(value depends on evaluation order)

2.2.8 Short Circuit Semantics

B1 →b B
′
1

B1&B2 →b B′
1&B2 false&B →b false true&B →b B
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2.2.9 Strictness

An operation is strict when arguments must be evaluated before the operation is evaluated. Addition is struct as
both expressions must be evaluated (left, then right).

Due to short circuiting, & is left strict as it is possible for the operation to be evaluated without evaluating the
right (non-strict in right argument).

2.2.10 Complex Programs

It is now possible to build complex programs to be evaluated with our small step rules.
Factorial ≜ y := x; a := 1;while 0 < y do (a := a× y; y := y − 1)

We can evaluate Factorial with an input s = [x 7→ . . . ] to get answer configuration [. . . , a 7→ x!, x 7→ . . . ]

Execute! Example Question 2.2.1

Evaluate Factorial for the following initial configuration:
s = [x 7→ 3, y 7→ 17, z 7→ 42]

Start

⟨y := x; a := 1;while 0 < y do (a := a× y; y := y − 1), [x 7→ 3, y 7→ 17, z 7→ 42]⟩

Get x variable

where C = a := 1;while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 17, z 7→ 42):

(W-SEQ.LEFT)

(W-ASS.EXP)

(W-EXP.VAR)
⟨x, s⟩ →e ⟨3, s⟩

⟨y := x, s⟩ →c ⟨y := 3, s⟩
⟨y := x;C, s⟩ →c ⟨y := 3;C, s⟩

Result:
⟨y := 3; a := 1;while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 17, z 7→ 42)⟩

Assign to y variable

where C = a := 1;while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 17, z 7→ 42):

(W-SEQ.LEFT)

(W-ASS.NUM)
⟨y := 3, s⟩ →c ⟨skip, s[y 7→ 3]⟩

⟨y := 3;C, s⟩ →c ⟨skip;C, s[y 7→ 3]⟩
Result:

⟨skip; a := 1;while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42)⟩

Eliminate skip

where C = a := 1;while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42):
(W-SEQ.SKIP)

⟨skip;C, s⟩ →c ⟨C, s⟩
Result:

⟨a := 1;while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42)⟩

Assign a

where C = while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42):

(W-SEQ.LEFT)

(W-ASS.NUM)
⟨a := 1, s⟩ →c ⟨skip, s[a 7→ 1]⟩

⟨a := 1;C, s⟩ →c ⟨skip;C, s[a 7→ 1]⟩
Result:

⟨skip; while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1)⟩
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Eliminate skip

where C = while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1)
(W-SEQ.SKIP)

⟨skip;C, s⟩ →c ⟨C, s⟩
Result:

⟨while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1)⟩

Expand while

where C = (a := a× y; y := y − 1), B = 0 < y and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1):
(W-WHILE)

⟨while B do C, s⟩ →c ⟨if B then (C; while B do C) else skip, s⟩
Result:
⟨if 0 < y then (a := a×y; y := y−1; while 0 < y do a := a×y; y := y−1) else skip, (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1)⟩

Get y variable

where C = (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1):

(W-COND.BEXP)

(W-BOOL.LESS.RIGHT)

(W-EXP.VAR)
⟨y, s⟩ → ⟨3, s⟩

⟨0 < y, s⟩ →b ⟨0 < 3, s⟩
⟨if 0 < y then (C; while 0 < y do C) else skip, s⟩ →c ⟨if 0 < 3 then (C; while 0 < y do C) else skip, s⟩

Result:
⟨if 0 < 3 then (a := a×y; y := y−1; while 0 < y do a := a×y; y := y−1); else skip, (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1)⟩

Complete if boolean

where C = (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1):

(W-COND.EXP)

(W-BOOl.LESS.TRUE)
⟨0 < 3, s⟩ →b ⟨true, s⟩

⟨if 0 < 3 then (C; while 0 < y do C) else skip, s⟩ →c ⟨if true then (C; while 0 < y do C) else skip, s⟩
Result:
⟨if true then (a := a×y; y := y−1; while 0 < y do a := a×y; y := y−1); else skip, (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1)⟩

Evaluate if

where C = (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1):
(W-COND.TRUE)

⟨if true then (C; while 0 < y do C) else skip, s⟩ →c ⟨C; while 0 < y do C, s⟩
Result:

⟨a := a× y; y := y − 1; while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1)⟩

Evaluate Expression a

where C = y := y − 1; while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1):

(W-SEQ.LEFT)

(W-ASS.EXP)

(W-EXP.MUL.LEFT)

(W-EXP.VAR)
⟨a, s⟩ → ⟨1, s⟩

⟨a× y, s⟩ →e ⟨1× y, s⟩
⟨a := a× y, s⟩ →c ⟨a := 1× y, s⟩

⟨a := a× y;C, s⟩ →c ⟨a := 1× y;C, s⟩
Result:

⟨a := 1× y; y := y − 1; while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1)⟩
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Evaluate Expression y

where C = y := y − 1; while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1):

(W-SEQ.LEFT)

(W-ASS.EXP)

(W-EXP.MUL.RIGHT)

(W-EXP.VAR)
⟨y, s⟩ →e ⟨3, s⟩

⟨1× y, s⟩ →e ⟨1× 3, s⟩
⟨a := 1× y, s⟩ →c ⟨a := 1× 3, s⟩

⟨a := 1× y;C, s⟩ → ⟨a := 1× 3;C, s⟩
Result:

⟨a := 1× 3; y := y − 1; while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1)⟩

Evaluate Multiply

where C = y := y − 1; while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1):

(W-SEQ.LEFT)

(W-ASS.EXP)

(W-EXP.MUL)
⟨1× 3, s⟩ →e ⟨3, s⟩

⟨a := 1× 3, s⟩ →c ⟨a := 3, s⟩
⟨a := 1× 3;C, s⟩ →c ⟨a := 3;C, s⟩

Result:
⟨a := 3; y := y − 1; while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1)⟩

Assign 3 to a

where C = y := y − 1; while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 1):

(W-SEQ.LEFT)

(W-ASS.NUM)
⟨a := 3, s⟩ →c ⟨skip, s[a 7→ 3]⟩

⟨a := 3;C, s⟩ →c ⟨skip;C, s[a 7→ 3]⟩
Result:

⟨skip; y := y − 1; while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 3)⟩

Eliminate Skip

where C = y := y − 1; while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 3):
(W-SEQ.SKIP)

⟨skip;C, s⟩ →c ⟨C, s⟩
Result:

⟨y := y − 1; while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 3)⟩

Assign 3 to y

where C = while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 3):

(W-SEQ.LEFT)

(W-ASS.EXP)

(W-EXP.SUB.LEFT)

(W-EXP.VAR)
⟨y, s⟩ → ⟨3, s⟩

⟨y − 1, s⟩ →e ⟨3− 1, s⟩
⟨y := y − 1, s⟩ →c ⟨y := 3− 1, s⟩

⟨y := y − 1;C, s⟩ →c ⟨y := 3− 1, s⟩
Result:

⟨y := 3− 1; while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 3)⟩

Evaluate Subtraction

where C = while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 3):

(W-SEQ.LEFT)

(W-ASS.EXP)

(W-EXP.SUB)
⟨3− 1, s⟩ →e ⟨2, s⟩

⟨y := 3− 1, s⟩ →c ⟨y := 2, s⟩
⟨y := 3− 1;C, s⟩ →c ⟨y := 2;C, s⟩

Result:
⟨y := 2;while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 3)⟩
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Assign 2 to y

where C = while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 3, z 7→ 42, a 7→ 3):

(W-SEQ.LEFT)

(W-ASS.NUM)
⟨y := 2, s⟩ →c ⟨skip, s[y 7→ 2]⟩

⟨y := 2;C, s⟩ →c ⟨skip;C, s[y 7→ 2]⟩
Result:

⟨skip; while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 2, z 7→ 42, a 7→ 3)⟩

Eliminate skip

where C = while 0 < y do (a := a× y; y := y − 1) and s = (x 7→ 3, y 7→ 2, z 7→ 42, a 7→ 3):
(W-SEQ.SKIP)

⟨skip;C, s⟩ →c ⟨C, s⟩
Result:

⟨while 0 < y do (a := a× y; y := y − 1), (x 7→ 3, y 7→ 2, z 7→ 42, a 7→ 3)⟩

UNFINISHED!!!
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Chapter 3

Structural Induction

3.1 Motivation

Structural induction is used for reasoning about collections of objects, which are:

� structured in a well defined way

� finite but can be arbitrarily large and complex

We can use this is reason about:

� natural numbers

� data structures (lists, trees, etc)

� programs (can be large, but are finite)

� derivations of assertions like E ⇓ 4 (finite trees of axioms and rules)

Structural Induction over Natural Numbers

N ∈ Nat ::= zero|succ(N)
To prove a property P (N) holds, for every number N ∈ Nat by induction on structure N:

Base Case Prove P (zero)
Inductive Case Prove P (Succ(K)) when P (K) holds

For example, we can prove the property:
plus(N, zero) = N

Base Case

Show plus(zero, zero) = zero

(1) LHS = plus(zero, zero)
(2) = zero (By definition of plus)
(3) = RHS (As Required)

Inductive Case

N = succ(K)
Inductive Hypothesis plus(K, zero) = K
Show plus(succ(K), zero) = succ(K)

(1) LHS = plus(succ(K), zero)
(2) = succ(plus(K, zero)) (By definition of plus)
(3) = succ(K) (By Inductive Hypothesis)
(4) = RHS (As Required)

Mathematics induction is a special case of structural induction:
P (0) ∧ [∀k ∈ N.P (k) ⇒ P (k + 1)]

In the exam you may use P (0) and P (K + 1) rather than P (zero) and P (succ(k)) to save time.
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3.1.1 Binary Trees

bTree ∈ BinaryTree ::= Node | Branch(bTree, bTree)

We can define a function leaves:
leaves(Node) = 1
leaves(Branch(T1, T2)) = leaves(T1) + leaves(T2)

Or branches:
branches(Node) = 0
branches(Branch(T1, T2)) = branches(T1) + branches(T2) + 1

I speak for the trees. . . Example Question 3.1.1

Prove By induction that leaves(T ) = branches(T ) + 1

UNFINISHED!!!

3.2 Induction over SimpleExp

To define a function on all expressions in SimpleExp:

� define f(n) directly, for each number n.

� define f(E1 + E2) in terms of f(E1) and f(E2).

� define f(E1 × E2) in terms of f(E1) and f(E2).

For example, we can do this with den:
den(E) = n ↔ E ⇓ n

3.2.1 Many Steps of Evaluation

Given → we can define a new relation →∗ as:
E →∗ E′ ↔ (E = E′ ∨ E → E1 → E2 → · · · → Ek → E′)

For expressions, the final answer is n if E →∗ n.

3.2.2 Multi-Step Reductions

The relation E →n E′ is defined using mathematics induction by:

Base Case

∀E ∈ SImpleExp. [E →0 E]

Inductive Case

∀E,E′ ∈ SimpleExp. [E →k+1 E′ ⇔ ∃E′′. [E →k E′′ ∧ E′′ → E′]]

Definition

∀E,E′. [E →∗ E′ ⇔ ∃n.[E →n E′]]

→∗ - there are some number of steps to evaluate to E′

Properties of →
Determinacy If E → E1 and E → E2 then E1 = E2.
Confluence If E →∗ E1 and E →∗ E2 then there exists E′ such that E1 →∗ E′ and E2 →∗ E′.
Unique answer If E →∗ n1 and E →∗ n2 then n1 = n2.
Normal Forms Normal form is numbers (N) for any E, E = n or E → E′ for some E′.
Normalisation No infinite sequences of expressions E1, E2, E3, . . . such that for all i ∈ N E1 → Ei+1 (Every

path goes to a normal form).
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3.2.3 Confluence of Small Step

We can prove a lemma expressing confluence:
L1 : ∀n ∈ N.∀E,E1, E2 ∈ SimpleExp.[E →n E1 ∧ E →∗ E2 ⇒ ∃E′ ∈ SimpleExp.[E1 →∗ E′ ∧ E2 →∗ E′]]

Lemma ⇒ Confluence

Confluence is: ∀E,E1, E2 ∈ SimpleExp.[E →∗ E1 ∧ E →∗ E2 ⇒ ∃E′ ∈ SimpleExp.[E1 →∗ E′ ∧ E2 →∗ E′]] From
lemma L1

(1) Take some arbitrary E,E1, E2 ∈ SimpleExp, assume confluence holds. (Initial Setup)
(2) E →∗ E1 (By Confluence)
(3) ∃n ∈ N.[E →n E1] (By 2 & definition of →∗)
(4) Hence L1 (By 3)

3.2.4 Determinacy of Small Step

We create a property P :

P (E)
def
= ∀E1, E2 ∈ SimpleExp.[E → E1 ∧ E → E2 ⇒ E1 = E2]

There are 3 rules that apply:

(A)
n1 + n2 → n

n = n1 + n2 (B)
E → E′

n+ E → n+ E′ (C)
E1 → E′

1

E1 + E2 → E′
1 + E2

Base Case

Take arbitrary n ∈ N and E1, E2 ∈ SimpleExp such that n → E1 ∧ n → E2 to show E1 = E2.

(1) n ̸→ (By inversion on A,B & C)
(2) ¬(n → E1) (By 1)
(3) ¬(n → E1 ∧ n → E2) (By 2)
(4) n → E1 ∧ n → E2 ⇒ E1 = E2 (By 3)
(5) E → E1 ∧ E → E2 ⇒ E1 = E2 (By 4)

Hence P (n)

Inductive Step

Take arbitrary E,E1, E2 such that E = E1 + E2

Inductive Hypothesis:
IH1 = P (E1)

IH2 = P (E2)

Assume there exists E3, E4 ∈ SimpleExp such that E1 + E2 → E3 and E1 + E2 → E4.
To show E3 = E4.

From inversion on A, B & C there are 3 cases to consider:
For A:

(1) There exists n1, n2 ∈ N such that E1 = n1 and E2 = n2 (By case A)
(3) E3 = n1 + n2 (By 1, A)
(4) E4 = n1 + n2 (By 1, A)
(5) E3 = E4 (By 3 & 4)

For B:

(1) There exists n ∈ N such that E1 = n (By case B)
(2) There exists E′ ∈ SimpleExp such that E2 → E′ (By case B)
(3) E3 = n+ E′ (By case B)
(4) There exists E′′ ∈ SimpleExp such that E2 → E′′ (By case B)
(5) E4 = n+ E′′ (By case B)
(6) E′ = E′′ (By IH2)
(7) E3 = E4 (By 3,5 & 6)

For C:

22



(1) There exists E′ ∈ SimpleExp such that E1 → E′ (By case C)
(2) There exists E′′ ∈ SimpleExp such that E1 → E′′ (By case C)
(3) E3 = E′ + E2 (By case C)
(4) E4 = E′′ + E2 (By case C)
(5) E′ = E′′ (By IH1)
(6) E3 = E4 (By 3,4 & 5)

(If E reduces to E1 in n steps, and to E2 in some number of steps, then there must be some E′ that E1 and E2

reduce to.)

Base Case

The base cases has n = 0. Hence E = E1, and hence E1 →∗ E2 and E1 →∗ E′

Inductive Case

Next we assume confluence for up to k steps, and attempt to prove for k + 1 steps.

We have two cases:
Case 1: E3 = E′, this is easy as E2 →∗ E′ →0 E3 →1 E1.
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Case 2: E3 →1 E′′ →∗ E′, in this case as E3 →1 E1 we know by determinacy that E′′ = E1 and hence E1 →∗ E′.

Q1 c - 2021/22 Exam Question 3.2.1

. . . continued from Q1b - 2021/22

Let us assume the following evaluation rules are deterministic.
∀b1, b2, B, s. [⟨B, s⟩ ⇓b b1 ∧ ⟨B, s⟩ ⇓b b2 ⇒ b1 = b2] (BOOl-DET)

∀n1, n2, E, s. [⟨E, s⟩ ⇓e n1 ∧ ⟨E, s⟩ ⇓e n2 ⇒ n1 = n2] (EXPR-DET)

Prove that the program evaluation rules are deterministic.
∀k1, k2, s1, s2, P, s, pc. [⟨P, s, pc⟩ ⇓ ⟨s1, k1⟩ ∧ ⟨P, s, pc⟩ ⇓ ⟨s2, k2⟩ ⇒ s1 = s2 ∧ k1 = k2]

Do you proof using mathematical induction on k1. You may use assumptions (BOOL-DET) and (EXPR-DET)
in your proof.

Q1c - 2020/21 Exam Question 3.2.2

. . . continued from Q1a - 2020/21

Recall the WHILE language from lectures. We can annotate the big-step operational semantics of
WHILE to record the derivation depth i ∈ N. This is just a simple annotation that will help with the
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proofs. Formally:
⟨C, s⟩ ⇓i s

′ where i ∈ N

The annotated big-step operational semantics of WHILE are given below.

(SKIP)
⟨skip, s⟩ ⇓0 s

(ASSIGN)
⟨E, s⟩ ⇓e n s[x 7→ n] = s′

⟨x := E, s⟩ ⇓0 s′

(IF-TRUE)
⟨B, s⟩ ⇓b true ⟨C1, s⟩ ⇓i s

′

⟨if B then C1 else C2, s⟩ ⇓i+1 s′
(IF-TRUE)

⟨B, s⟩ ⇓b false ⟨C2, s⟩ ⇓i s
′

⟨if B then C1 else C2, s⟩ ⇓i+1 s′

(WHILE-ITER)
⟨B, s⟩ ⇓b true ⟨C, s⟩ ⇓i s

′′ ⟨while B do C, s′′⟩ ⇓j s
′ k = max(i, j)

⟨while B do C, s⟩ ⇓k+1 s′

(WHILE-BREAK)
⟨B, s⟩ ⇓b false

⟨while B do C, s⟩ ⇓0 s
(SEQ)

⟨C1, s⟩ ⇓i s
′′ ⟨C2, s

′′⟩ ⇓j s
′ k = max(i, j)

⟨C1;C2, s⟩ ⇓k+1 s′

Consider the translation function f from WHILE commands to NONDET commands, defined inductively
as follows:

f(skip) = skip

f(x := E) = x := E

f(if B then C1 else C2) = or((assume B; f(C1)), (assume ¬B; f(C2)))

f(while B do C) = loop(assume B; f(C)); assume¬B
f(C1;C2) = f(C1); f(C2)

Prove that the translation f preserves the meaning of commands:
∀i, C, s, s′. [⟨C, s⟩ ⇓i s

′ ⇒ (f(C), s) ⇓ s′]

Do your proof using strong mathematical induction on i. You may also use the following lemma:
∀B, s. [⟨B, s⟩ ⇓b false ⇒ ⟨¬B, s⟩ ⇓b true] (LEMMA-EXCLUDED-MIDDLE)

3.3 Multi-Step Reductions

Note: We will reference to state by set State ≜ (V ar ⇀ N).

Lemma Definition 3.3.1

A small proven proposition that can be used in a proof. Used to make the proof smaller.

Also know as an ”auxiliary theorem” or ”helper theorem”.

Corollary Definition 3.3.2

A theorem connected by a short proof to another existing theorem.

If B is can be easily deduced from A (or is evident in A’s proof) then B is a corollary of A.

3.3.1 Lemmas

1. ∀r ∈ N.∀E1, E
′
1, E2 ∈ SimpleExp.[E1 →r E′

1 ⇒ (E1 + E2) →r (E′
1 + E2)]

2. ∀r, n ∈ N.∀E2, E
′
2 ∈ SimpleExp.[E2 →r E′

2 ⇒ (n+ E2) →r (n+ E′
2)]

3.3.2 Corollaries

1. ∀n1 ∈ N.∀E1, E2 ∈ SimpleExp.[E1 →∗ n1 ⇒ (E1 + E2) →∗ (n1 + E2)]

2. ∀n1, n2 ∈ N.∀E2 ∈ SimpleExp.[E2 →∗ n2 ⇒ (n1 + E2) →∗ (n1 + n2)]

3. ∀n, n1, n2,∈ N.∀E1, E2 ∈ SimpleExp.[E1 →∗ n1 ∧ E2 →∗ n2 ∧ n = n1 + n2 ⇒ (E1 + E2) →∗ n]
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3.3.3 Connecting ⇓ and →∗ for SimpleExp

∀E ∈ SimpleExp, n ∈ N.[E ⇓ n ⇔ E →∗ n]

We prove each direction of implication separately. First we prove by induction over E using the property P :
P (E) =def ∀n ∈ N.[E ⇓ n ⇒ E →∗ n]

Base Case

Take arbitrary m ∈ N to show P (m) = m ⇓ n ⇒ m →∗ n.

(1) Assume m ⇓ n
(2) m = n (From Inversion of ⇓)
(3) m →∗ n (By 2 and definition of →∗)

Inductive Step

Take some arbitrary E,E1, E2 such that E = E1 + E2.
Inductive Hypothesis

∀n1 ∈ N.[E1 ⇓ n1 ⇒ E1 →∗ n1]

∀n2 ∈ N.[E2 ⇓ n2 ⇒ E2 →∗ n2]

To show P (E): ∀n ∈ N.[(E1 + E2) ⇓ n ⇒ (E1 + E2) →∗ n].

(1) Assume (E1 + E2) ⇓ n
(2) ∃n1, n2 ∈ N.[E1 ⇓ n1 ∧ E2 ⇓ n2] (By 1 & definition of B-ADD)
(3) E1 →∗ n1 (By 2 & IH)
(4) E2 →∗ n2 (By 2 & IH)
(5) Chose some n ∈ N such that n = n1 + n2

(6) (E1 + E2) →∗ n (By 3,4,5 Corollary 3)
(7) E →∗ n (By 6, definition of E)

Hence assuming E ⇓ n implies E →∗ n, so P (E).
Next we work the other way, to show:

∀E ∈ SimpleExp.∀n ∈ N.[E →∗ n ⇒ E ⇓ n]

(1) Take arbitrary E ∈ SimplExp such that E →∗ n (Initial setup)
(2) Take some m ∈ N such that E ⇓ m (By totality of ⇓)
(3) n = m (By 1,2 & uniqueness of result for →)
(4) E ⇓ n (By 3)

It is also possible to prove this without using normalisation and determinacy, by induction on E.

3.3.4 Multi-Step Reductions

Lemmas

∀r ∈ N.∀E1, E
′
1, E2.[E1 →r E′

1 ⇒ (E1 + E2) →r (E′
1 + E2)]

To prove ∀r ∈ N.[P (r)] by induction on r:

Base Case

� Base case is r = 0.

� Prove that P (0) holds.

Inductive Step

� Inductive Case is r = k + 1 for arbitrary k ∈ N.
� Inductive hypothesis is P (k).

� Prove P (k + 1) using inductive hypothesis.
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Proof of the Lemma

By induction on r: Base Case: Take some arbitrary E1, E
′
1, E2 ∈ SimpleExp such that E1 →0 E′

1.

(1) E1 = E′
1 (By definition of →0)

(2) (E1 + E2) = (E′
1 + E2) (By 1)

(3) (E1 + E2) →0 (E′
1 + E2) (By definition of →0)

Inductive Step: Take arbitrary k ∈ N such that P (k)

(1) Take arbitrary E1, E
′
1, E2 such that E1 → E′

1 (Initial setup)
(2) Take arbitrary E′′

1 such that E′′
1 → E′

1

(3) (E1 + E2) →k (E′′
1 + E2) (By 2 & IH)

(4) (E′′
1 + E2) → (E′

1 + E2) (By 2 & rule S-LEFT)
(5) (E1 + E2) →k+1 (E′

1 + E2) (3,4, definition of →k+1)

3.3.5 Determinacy of → for Exp

We extend simple expressions configurations of the form ⟨E, s⟩.
E ∈ Exp ::= n|x|E + E| . . .

Determinacy:
∀E,E1, E2 ∈ Exp.∀s, s1, s2 ∈ State.[⟨E, s⟩ → ⟨E1, s1⟩ ∧ ⟨E, s⟩ → ⟨E2, s2⟩ ⇒ ⟨E1, s1⟩ = ⟨E2, s2⟩]

We prove this using property P :
P (E, s) ≜ ∀E1, E2 ∈ Exp.∀s1, s2 ∈ State.[⟨E, s⟩ → ⟨E1, s1⟩ ∧ ⟨E, s⟩ → ⟨E2, s2⟩ ⇒ ⟨E1, s1⟩ = ⟨E2, s2⟩]

Base Case: E = x

Take arbitrary n ∈ N and s ∈ State to show P (n, s)

(1) take E1 ∈ Exp, s1 ∈ State such that ⟨n, s⟩ → ⟨E1, s1⟩ (Initial setup)
(2) take E2 ∈ Exp, s2 ∈ State such that ⟨n, s⟩ → ⟨E2, s2⟩ (Initial setup)
(3) n = E1 ∧ s = s1 (By 1 & inversion on definition of E.NUM)
(4) n = E2 ∧ s = s2 (By 2 & inversion on definition of E.NUM)
(5) E1 = E2 ∧ s1 = s2 (By 3 & 4)
(6) ⟨E1, s1⟩ = ⟨E2, s2⟩ (By 5 & definition of configurations)

Base Case: E = x

Take arbitrary x ∈ V ar and s ∈ State to show P (n, s)

(1) take E1 ∈ N, s1 ∈ State such that ⟨x, s⟩ → ⟨E1, s1⟩ (Initial setup)
(2) take E2 ∈ N, s2 ∈ State such that ⟨x, s⟩ → ⟨E2, s2⟩ (Initial setup)
(3) E1 = s(x) ∧ s1 = s (By 1 & inversion on definition of E.VAR)
(3) E2 = s(x) ∧ s2 = s (By 2 & inversion on definition of E.VAR)
(5) E1 = E2 ∧ s1 = s2 (By 3 & 4)
(6) ⟨E1, s1⟩ = ⟨E2, s2⟩ (By 5 & definition of configurations)

. . . Inductive Step . . .

3.3.6 Syntax of Commands

C ∈ Com ::= x := E | if B then C else C | C;C | skip | while B do C

Determinacy

∀C,C1, C2 ∈ Com.∀s, s1, s2 ∈ State.[⟨C, s⟩ →c ⟨C1, s1⟩ ∧ ⟨C, s⟩ →c ⟨C2, s2⟩ ⇒ ⟨C1, s1⟩ = ⟨C2, s2⟩]

Confluence

∀C,C1, C2 ∈ Com.∀s, s1, s2 ∈ State.[⟨C, s⟩ →∗
c ⟨C1, s1⟩ ∧ ⟨C, s⟩ →∗

c ⟨C2, s2⟩ ⇒ ∃C ′ ∈ Com.∃s′ ∈ State.

[⟨C1, s1⟩ →∗
c ⟨C ′, s′⟩ ∧ ⟨C2, s2⟩ →∗

c ⟨C ′, s′⟩]]
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Unique Answer

∀C ∈ Com.s1s2 ∈ State.[⟨C, s⟩ →∗
c ⟨skip, s1⟩ ∧ ⟨C, s⟩ →∗

c ⟨skip, s2⟩ ⇒ s1 = s2]

No Normalisation

There exist derivations of infinite length for while.

3.3.7 Connecting ⇓ and →∗ for While

1. ∀E,n ∈ Exp.∀s, s′ ∈ State.[⟨E, s⟩ ⇓e ⟨n, s′⟩ ⇔ ⟨E, s⟩ →∗
e ⟨n, s′⟩]

2. ∀B, b ∈ Bool.∀s, s′ ∈ State.[⟨B, s⟩ ⇓b ⟨b, s′⟩ ⇔ ⟨B, s⟩ →∗
b ⟨b, s′⟩]

3. ∀C ∈ Com.∀s, s′ ∈ State.[⟨C, s⟩ ⇓c ⟨s′⟩ ⇔ ⟨C, s⟩ →∗
c ⟨skip, s′⟩]

For Exp and Bool we have proofs by induction on the structure of expressions/booleans.

For ⇓c it is more complex as the ⇓c⇐→∗
c cannot be proven using totality. Instead complete/strong induction on

length of →∗
c is used.
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Chapter 4

Register Machines

Register Machine Simulator Extra Fun! 4.0.1

Register Machine Simulator Repository

This simulator has been developed by Yı̀táng Chén to support 50003, make sure to give him a ⋆!

4.1 Algorithms

Hilbert’s Entscheidungsproblem (Decision Problem) Definition 4.1.1

A problem proposed by David Hilbert and Wilhem Ackermann in 1928. Considering if there is an algorithm
to determine if any statement is universally valid (valid in every structure satisfying the axioms - facts within
the logic system assumed to be true (e.g in maths 1 + 0 = 1)).

This can be also be expressed as an algorithm that can determine if any first-order logic statement is
provable given some axioms.

It was proven that no such algorithm exists by Alonzo Church and Alan Turing using their notions
of Computing which show it is not computable.

Algorithms Informally Definition 4.1.2

One definition is: A finite, ordered series of steps to solve a problem.

Common features of the many definitions of algorithms are:

Finite Finite number of elementary (cannot be broken down further) operations.
Deterministic Next step uniquely defined by the current.
Terminating? May not terminate, but we can see when it does & what the result is.
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4.2 Register Machines

Register Machine Definition 4.2.1

A turing-equivalent (same computational power as a turing machine) abstract machine that models what is
computable.

� Infinitely many registers, each storing a natural number (N ≜ {0, 1, 2, . . . })
� Each instruction has a label associated with it.

There are 3 instructions:

Ri
+ → Lm Add 1 to register Ri and then jump to the instruction at Lm

Ri
− → Ln, Lm If Ri > 0 then decrement it and jump to Ln, else jump to Lm

HALT Halt the program.

At each point in a program the registers are in a configuration c = (l, r0, . . . , rn) (where ri is the value of Ri

and l is the instruction label Ll that is about to be run).

� c0 is the initial configuration, next configurations are c1, c2, . . . .

� In a finite computation, the final configuration is the halting configuration.

� In a proper halt the program ends on a HALT.

� In an erroneous halt the program jumps to a non-existent instruction, the halting configuration is
for the instruction immediately before this jump.

Sum of three numbers Example Question 4.2.1

The following register machine computes:
R0 = R0 +R1 +R2 R1 = 0 R2 = 0

Or as a partial function:
f(x, y, z) = x+ y + z

Registers

R0 R1 R2

Program

L0 : R1
− → L1, L2

L1 : R0
+ → L0

L2 : R2
− → L3, L4

L3 : R0
+ → L2

L4 : HALT

Example Configuration

Li R0 R1 R2

0 1 2 3
1 1 1 3
0 2 1 3
1 2 0 3
0 3 0 3
2 3 0 3
3 3 0 2
2 4 0 2
3 4 0 1
2 5 0 1
3 5 0 0
2 6 0 0
4 6 0 0
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4.2.1 Partial Functions

Partial Function Definition 4.2.2

Maps some members of the domain X, with each mapped member going to at most one member of the
codomain Y .

f ⊆ X × Y and (x, y1) ∈ f ∧ (x, y2) ∈ f ⇒ y1 = y2

f(x) = y (x, y) ∈ f
f(x) ↓ ∃y ∈ Y.[f(x) = y]
f(x) ↑ ¬∃y ∈ Y.[f(x) = y]
X ⇀ Y Set of all partial functions from X to Y .
X → Y Set of all total functions from X to Y .

A partial function from X to Y is total if it satisfies f(x) ↓.

Register machines can be considered as partial functions as for a given input/initial configuration, they produce
at most one halting configuration (as they are deterministic, for non-finite computations/non-halting there is no
halting configuration).

We can consider a register machine as a partial function of the input configuration, to the value of the first register
in the halting configuration.

f ∈ Nn ⇀ N and (r0, . . . , rn) ∈ Nn, r0 ∈ N

Note: Many different register machines may compute the same partial function.

4.2.2 Computable Functions

The following arithmetic functions are computable. Using them we can derive larger register machines for more
complex arithmetic (e.g logarithms making use of repeated division).

Projection

p(x, y) ≜ x

(r0, r1) → r0
HALT

Constant

c(x) ≜ n

(r0) → n

L0 : R0
− → L0, L1

L1 : R0
+ → L2

...
...

Ln : R0
+ → Ln+1

Ln+1 : HALT

Truncated Subtraction

x− y ≜

{
x− y y ≤ x

0 y > x

(r0, r1) → r0 − r1

L0 : R1
− → L1, L2

L1 : R0
− → L0, L2

L2 : HALT

Integer Division

Note that this is an inefficient implementation (to make it easy to follow) we could combine the halts and shortcut
the initial zero check (so we don’t increment, then re-decrement).
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x div y ≜


⌊
x

y

⌋
y > 0

0 y = 0

L0 : R1
− → L3, L2

L1 : R0
− → L1, L2

L2 : HALT
L3 : R1

+ → L4

L4 : R1
− → L5, L7

L5 : R2
+ → L6

L6 : R3
+ → L4

L7 : R3
− → L8, L9

L8 : R1
+ → L9

L9 : R2
− → L10, L4

L10 : R0
− → L9, L11

L11 : R4
− → L12, L13

L12 : R0
+ → L11

L13 : HALT

Multiplication

x× y

L0 : R1
− → L5, L1

L1 : R0
− → L1, L2

L2 : R3
− → L3, L4

L3 : R0
+ → L2

L4 : HALT
L5 : R0

− → L6, L8

L6 : R2
+ → L7

L7 : R3
+ → L5

L8 : R2
− → L9, L0

L9 : R0
+ → L8

Exponent of base 2

e(x) ≜ 2x

L0 : R1
+ → L1

L1 : R0
− → L5, L2

L2 : R1
− → L3, L4

L3 : R0
+ → L2

L4 : HALT
L5 : R1

− → L6, L7

L6 : R2
+ → L5

L7 : R2
− → L8, L1

L8 : R1
+ → L9

L9 : R1
+ → L7

Q2bi - 2021/22 Exam Question 4.2.1

Consider the graphical representation of a Register Machine M :
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Write down the program/code (list of instructions) for this machine using only a single HALT instruction
(at the end of the code).

Q2bi - 2020/21 Exam Question 4.2.2

Describe (graphically) a Register Machine (RM) gadget which tests if R0 is even or odd without changing the
value of R0 and using only RM instructions (no gadgets).

Q2bii - 2020/21 Exam Question 4.2.3

Note: This question contains corrections from the original paper

Consider the graphical representation of register machine M :
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Take for E ≡ R−
1 , H ≡ R−

2 and T ≡ R−
0 .

Write down the program, code or list of instructions for this machine using only a single HALT
instruction (at end of the code).

4.3 Encoding Programs as Numbers

Halting Problem Definition 4.3.1

Given a set S of pairs (A,D) where A is an algorithm and D is some input data A operates on (A(D)).

We want to create some algorithm H such that:

H(A,D) ≜

{
1 A(D) ↓
0 otherwise

Hence if A(D) ↓ then A(D) eventually halts with some result.

We can use proof by contradiction to show no such algorithm H can exist.

Assume an algorithm H exists:

B(p) ≜

{
halts H(p(p)) = 0 (p(p) does not halt)

forever H(p(p)) = 1 (p(p) halts)

Hence using H on any B(p) we can determine if p(p) halts (H(B(p)) ⇒ ¬H(p(p))).

Now we consider the case when p = B.

B(B) halts Hence B(B) does not halt. Contradiction!
B(B) does not halt Hence B(B) halts. Contradiction!

Hence by contradiction there is not such algorithm H.

In order to reason about programs consuming/running programs (as in the halting problem), we need a way to
encode programs as data. Register machines use natural numbers as values for input, and hence we need a way to
encode any register machine as a natural number.
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4.3.1 Pairs

⟨⟨x, y⟩⟩ = 2x(2y + 1) y 1 01 . . . 0x Bijection between N× N and N+ = {n ∈ N|n ̸= 0}
⟨x, y⟩ = 2x(2y + 1)− 1 y 0 11 . . . 1x Bijection between N× N and N

Q2a - 2021/22 Exam Question 4.3.1

Either state your birthday or take today’s date as B = Y YMMDD (i.e. last two digits of the year, two
digits representing month and day each) and determine the pair, the list, and the Register Machine (RM)
instruction it represents, i.e. for which pair x, y do we have ⟨⟨x, y⟩⟩ = B, for which list ℓ of numbers do we
get ⌜ℓ⌝ = B, and for which Register Machine instruction I do we have that ⌜I⌝ = B?

Show your work, e.g. binary representation of your B, etc.

Q2a - 2020/21 Exam Question 4.3.2

State your CID and determine the pair, the list, and the Register Machine (RM) instruction it represents,
i.e. for which pair x, y do we have ⟨⟨x, y⟩⟩ = CID, for which list ℓ of numbers do we get ⌜ell⌝ = CID, and
for which register-machine instructions I do we have that ⌜I⌝ = CID?

Show your work, e.g. binary representation of your CID, etc.

Add eight to your CID, i.e. consider CID + 8, and repeat these three decodings.

Can one be sure that very student in class can (in principle) decode their CIDs as requested?

4.3.2 Lists

We can express lists and right-nested pairs.
[x1, x2, . . . , xn] = x1 : x2 : · · · : xn = (x1, (x2, (. . . , xn) . . . ))

We use zero to define the empty list, so must use a bijection that does not map to zero, hence we use the pair
mapping ⟨⟨x, y⟩⟩.

l :

{
⌜[]⌝ ≜ 0

⌜x1 :: linner⌝ ≜ ⟨⟨x, ⌜linner⌝⟩⟩

Hence:
⌜x1, . . . , xn⌝ = ⟨⟨x1, ⟨⟨. . . , xn⟩⟩ . . . ⟩⟩

4.3.3 Instructions

⌜Ri
+ → Ln⌝ = ⟨⟨2i, n⟩⟩

⌜Ri
− → Ln, Lm⌝ = ⟨⟨2i+ 1, ⟨n,m⟩ ⟩⟩
⌜HALT⌝ = 0

4.3.4 Programs

Given some program:

⌜

L0 : instruction0

...
...

Ln : instructionn

⌝ = ⌜[⌜instruction0⌝, . . . , ⌜instructionn⌝]⌝
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Tools Extra Fun! 4.3.1

In order to simplify checking workings, a basic python script for running, encoding and decoding register
machines is provided (also available in the notes repository).

� It is designed to be used in the python shell, to allow for easy manipulation, storing, etc of register
machines, encoding/decoding results.

� It also produces latex to show step-by-step workings for calculations.

Have a go at making your own register machine encode/decode and simulation in your language of choice!
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4.4 Gadgets

Register Machine Gadget Definition 4.4.1

A gadget is a partial register machine graph, used as components in more complex programs, that can be
composed into larger register machines or gadgets.

� Has a single ENTRY (much like START ).

� Can have many EXIT (much like HALT).

� Operates on registers specified in the name of the gadget (e.g ”Add R1 to R2”).

� Can use scratch registers (assumed to be zero prior to gadget and set to zero by the gadget before it
exits - allows usage in loops)

� We can rename the registers used in gadgets (simply change the registers used in the name (push R0 to
R1 → push X to Y ), and have all scratch registers renamed to registers unused by other parts of the
program)

For example we can create several gadgets in terms of registers that we can rename.

And then can use these to create larger programs.

Q2bii - 2021/22 Exam Question 4.4.1

. . . continued from question Q2bi - 2021/22
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Replace some instructions by gadgets as follows:
R+

0 by copy N to O

N+ by copy Y to N

O+ by push X to O

R−
1 by pop O to R1

R−
2 by pop O to R2

R+
3 by add R2 to R1

R+
2 by push R1 to N

R+
1 by copy R2 to R1

where for pop gadgets the empty exit is identified with ↠ and done with → and where we have additional
registers: X with (constant) value 1 and Y with (constant) value 2.

Draw the graphical representation of the resulting RM and describe its execution with initially: R0 = 3 and
all other registers set to 0 (except for X and Y ), use the same labels as in the original RM.

Q2biii - 2021/22 Exam Question 4.4.2

. . . continued from Q2bii - 2021/22

What does this register machine compute for R0 = n and all other registers set to 0 (except for X
and Y ), i.e. what does the contents of register N or O represent when the RM terminates?

Give an interpretation of what the registers are used for/hold.

4.5 Analysing Register Machines

There is no general algorithm for determining the operations of a register machine (i.e halting problem)

However there are several useful strategies one can use:

4.5.1 Experimentation

Can create a table of input values against outputs to attempt to fetermine the relation - however the values could
match many different relations.

4.5.2 Creating Gadgets

We can group instructions together into gadgets to identify simple behaviours, and continue to merge to develop an
understanding of the entire machine.

For example below, we can deduce the result as L = 2X(2L+ 1)
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4.5.3 Invariants

We can use logical assertions on the register machine state at certain instructions, both to get the result of the
register machine, and to prove the result.

If correct, every execution path to a given instruction’s invariant, establishes that invariant.

We could attach invariants to every instruction, however it is usually only necessary to use them at the start,
end and for loops (preconditions/postconditions).

Our first invariant (P ) can be defined as:
P ≡ (X = x ∧ L = l ∧ Z = 0)

Next we can use the instructions between invariant to find the states under which the invariants must hold.

1. P [Z − 1/Z] ⇒ I1 After incrementing Z needs to go to the start of the first loop.
2. I1[L+ 1/L,Z − 2/Z] ⇒ I1 The loop decrements L and increases Z by two. After each loop iteration, I1 must

still hold.
3. I1 ∧ L = 0 ⇒ I2 If L = 0 the loop is escaped, and we move to I2.
4. I2[Z + 1/Z,L− 1/L] ⇒ I2 Loop increments L and decrements Z on each iteration, after this, I2 must still

hold.
5. I2 ∧ Z = 0 ⇒ I3 Loop ends when Z = 0, moves to I3.
6. I3[X + 1/X] ⇒ I1 Large loop decrements X on each iteration, invariant must hold with the

new/decremented X.
7. I3 ∧X = 0 ⇒ Q When the main X-decrementing loop is escaped, we move to exit, so Q must hold.

We can now use these constraints (also called verification conditions) to determine an invariant.

For each constraint we do:

1. Get the basic for (potentially one already derived) for the invariant in question.

2. If there is iteration, iterate to build up a disjunction.

3. Find the pattern, and then re-form the invariant based on it.

Constraint 1.

Hence we can deduce I1 as:
I1 = (X = x ∧ L = l ∧ Z = 1)

(Take P and increment Z)
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Constraint 2.

We can iterate to get the disjunction:
I1 ≡ (X = x ∧ L = l ∧ Z = 1) ∨ (X = x ∧ L+ 1 = l ∧ Z − 2 = 1) ∨ (X = x ∧ L+ 2 = l ∧ Z − 4 = 1) ∨ . . .

Hence we can determine the pattern for each disjunct as:
Z + 2L = 2l + 1

Hence we create our invariant:
I1 = (X = x ∧ Z + 2L = 2l + 1)

Constraint 3.

Hence as L = 0 we can determine that Z = 2l + 1.
I2 = (X = x ∧ Z = 2l + 1 ∧ L = 0)

Constraint 4.

We iterate to get the disjunction:
I2 = (X = x ∧ Z = 2l + 1 ∧ L = 0) ∨ (X = x ∧ Z = 2l + 0 ∧ L = 1) ∨ (X = x ∧ Z = 2l − 1 ∧ L = 2) ∨ . . .

Hence we notice the pattern:
Z + L = 2l + 1

So can deduce the invariant:
I2 = (X = x ∧ Z + L = 2l + 1)

Constraint 5.

We can derive an invariant I3 using Z = 0.
I3 = (X = x ∧ L = 2l + 1 ∧ Z = 0)

Constraint 6.

We can use the constraint, and the currently derived I1 to get a disjunction:
I1 = (X = x− 1 ∧ L = 2l + 1 ∧ Z = 0) ∨ (X = x ∧ Z + 2L = 2l + 1)

We can apply constraint 2. on the first part of this disjunction, iterating to get the disjunction:

I1 = (X = x ∧ Z + 2L = 2l + 1) ∨


(X = x− 1 ∧ L = 2l + 1 ∧ Z = 0)∨
(X = x− 1 ∧ L = 2l + 0 ∧ Z = 2)∨
(X = x− 1 ∧ L = 2l − 1 ∧ Z = 4)∨

(X = x− 1 ∧ L = 2l − 2 ∧ Z = 8) ∨ . . .


Hence for the second group of disjuncts we have the relation:

Z + 2L = 2(2l + 1)

Hence we have:
I1 = (X = x ∧ Z + 2L = 2l + 1) ∨ (X = x− 1 ∧ Z + 2L = 2(2l + 1))

Hence when we repeat on the larger loop, we will double again, iterating we get:
I1 = (X = x ∧ Z + 2L = 2l + 1) ∨ (X = x− 1 ∧ Z + 2L = 2(2l + 1)) ∨ (X = x− 2 ∧ Z + 2L = 4(2l + 1)) ∨ . . .

Hence we have the relation:
I1 = (Z + 2L = 2X−x(2l + 1))

We can apply this doubling to L2 also as it forms part of the larger loop:
I2 = (Z + L = 2X−x(2l + 1))

And to I3:
I3 = (L = 2X−x(2l + 1) ∧ Z = 0)

Constraint 7.

Hence we can now derive Q as:
Q = (L = 2x(2l + 1) ∧ Z = 0)
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Termination

We also need to show that each of our loops eventually terminate, we can do this by showing that sme variant (e.g
register, or combination of) decreases every time the invariant is reached/visited.

For I1 we can use the lexicographical ordering (X,L) as in each inner loop L decreases, but for the larger loop
while L is reset/does not increase, X does.

For I2 we can similarly use the lexicographical ordering (X,Z)

For I3 we can just use X.

4.6 Universal Register Machine

A register machine that simulates a register machine.

It takes the arguments:

R0 = 0
R1 = the program encoded as a number
R2 = the argument list encoded as a number

All other registers zeroed

The registers used are:

R1 P Program code of the register machine being simulated/emulated.
R2 A Arguments provided to the simulated register machine.
R3 PC Program Counter - The current register machine instruction.
R4 N Next label num,ber/next instruction to go to. Is also used to store the current

instruction
R5 C The current instruction.
R6 R The value of the register used by the current instruction.
R7 S Auxiliary Register
R8 T Auxiliary Register
R9 . . . Scratch Registers

while true:

if PC >= length P:

HALT!

N = P[PC]

if N == 0:

HALT!

(curr, next) = decode(N)

C = curr

N = next

# either C = 2i (R+) or C = 2i + 1 (R-)

R = A[C // 2]

# Execute C on data R, get next label and write back to registers

(PC, R_new) = Execute(C, R)

A[C//2] = R_new
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Chapter 5

Halting Problem

5.1 Halting Problem for Register Machines

A register machine H decides the halting problem if for all e, a1, . . . , an ∈ N:
R0 = 0 R1 = e R2 = ⌜[a1, . . . , an]⌝ R3.. = 0

And where H halt with the state as follows:

R0 =

{
1 Register machine encoded as e halts when started with R0 = 0, R1 = a1, . . . , Rn = an

0 otherwise

We can prove that there is no such machine H through a contradiction.

Hence when we run C with the argument C we get a contradiction.

C(C) Halts Then C with R1 = ⌜C⌝ as an argument does not halt, which is a contradiction
C(C) Does not Halt Then C with R1 = ⌜C⌝ as an argument halts, which is a contradiction
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5.2 Computable Functions

5.2.1 Enumerating the Computable Functions

Onto (Surjective) Definition 5.2.1

Each element in the codomain is mapped to by at least one element in the domain.
∀y ∈ Y. ∃x ∈ X. [f(x) = y] ⇒ f is onto

For each e ∈ N, φe ∈ N ⇀ N (partial function computed by program(e)):
φe(x) = y ⇔ program(e) with R0 = 0 ∧R1 = x halts with R0 = y

Hence for a given program ∈ N we can get the computable partial function of the program.
e 7→ φe

Therefore the above mapping represents an onto/surjective function from N to all computable partial functions from
N ⇀ N.

5.2.2 Uncomputable Functions

For f : X ⇀ Y (partial function from X to Y ):

f(x) ↑ ≜ ¬∃y ∈ Y. [f(x) = y]

f(x) ↓ ≜ ∃y ∈ Y. [f(x) = y]

Hence we can attempt to define a function to determine if a function halts.

f ∈ N ⇀ N ≜ {(x, 0)|φx(x) ↑} ≜ f(x) =

{
0 φx(x) ↑
undefined φx(x) ↓

However we run into the halting problem:

Assume f is computable, then f = φe for some e ∈ N.

if φe(e) ↑ by definition of f , φe(e) = 0 so φe(e) ↓ which is a contradiction
if φe(e) ↓ by definition of f , f(e) ↑, and hence as f = φe, φe ↑ which is a contradiction

Here we have ended up with the halting problem being uncomputable.

Collatz Conjecture Extra Fun! 5.2.1

A famous example of a simple algorithm not yet determined to terminate on all inputs.

Given some input n, how many steps of applying f are required to reach 1, given:

f =


n

2
n is even

3n+ 1 n is odd

The conjecture states that the sequence from any positive integer n will eventually go to zero. And hence any
algorithm generating the sequence will terminate. This remains unproven.

-- get the sequence for positive integer

-- note we have use Integral (as proven to terminate for all values of fixed size Int)

collatz :: (Integral a) => a -> [a]

collatz 1 = [1]

collatz n

| odd n = n : collatz (n * 3 + 1)

| otherwise = n : collatz (n `div` 2)

limit :: (Integral a) => a -> Int

limit = length . collatz
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5.2.3 Undecidable Set of Numbers

Given a set S ⊆ N, its characteristic function is:

χS ∈ N → N χS(x) ≜

{
1 x ∈ S

0 x ̸∈ S

S is register machine decidable if its characteristic function is a register machine computable function.

S is decidable iff there is a register machine M such that for all x ∈ N when run with R0 = 0, R1 = x and
R2.. = 0 it eventually halts with:

R0 = 1 ⇔ x ∈ S R0 = 1 ⇔ x ̸∈ S

Hence we are effectively asking if a register machine exists that can determine if any number is in some set S.

We can then define subsets of N that are decidable/undecidable.

The set of functions mapping 0 is undecidable

Given a set:
S0 ≜ {e | φe(0) ↓}

Hence we are finding the set of the indexes (numbers representing register machines) that halt on input 0.

If such a machine exists, we can use it to create a register machine to solve the halting problem. Hence this is
a contradiction, so the set is undecidable.

The set of total functions is undecidable

Take set S1 ⊆ N:
S1 ≜ {e | φetotal function}

If such a register machine exists to compute χS1 , we can create another register machine, simply checking 0. Hence
as from the previous example, there is no register machine to determine S0, there is none to determine S1.

Q2biii - 2020/21 Exam Question 5.2.1

. . . continued from Q2bii - 2020/21

Take the machine M in (ii) and use the substitutions to create register machine K:

E ≜ even R0 exiting by ↠ if odd, or by → if even.

H ≜ R0 := R0/2 exiting by ↠ if odd, or by → if even.

T ≜ R0 := 3×R0 + 1 with no ↠ needed.

Describe what the Register Machine K computing? In particular sketch an execution of K with initially
R0 = 0, 1, 2, 3, 4 and 5.

Q2biv - 2020/21 Exam Question 5.2.2

. . . continued from Q2biii - 2020/21

To the best of our knowledge nobody could yet show that K halts for all possible initial values of
R0. How does this relate to the Halting problem for RMs?
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Chapter 6

Turing Machines

6.1 Definition

Turing Machine Definition 6.1.1
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Register machines abstract away the representation of numbers and operations on numbers (just uses N with incre-
ment, decrement operations), Turing machines are a more concrete representation of computing.

6.1.1 Turing → Register Machine

We can show that any computation by a Turing Machine can be implemented by a Register Machine. Given a Turing
Machine M :

1. Create a numerical encoding of M ’s finite number of states, tape symbols, and initial tape contents.

2. Implement the transition table as a register machine.

3. Implement a register machine program to repeatedly carry out →M

Hence Turing Machine Computable ⇒ Register Machine Computable.

Turing Machine Number Lists

In order to take arguments, and return value we need to encode lists on number on the tape of a turing machine.
This is done as strings of unary values.

Q2c - 2021/22 Exam Question 6.1.1

Specify a turing machine M = (Q,Σ, s, σ) which takes a tape with the representation of a list ℓ =
[x1, x2, . . . , xn] and terminates with a tape representing the singleton list [s] where:

s =

(
n∑

i=1

xi

)
+ n

Describe the computational steps (configurations) of M when the initial tape represents the list [1, 2, 3].

Turing Computable Definition 6.1.2

If f : Nn ⇀ N is Turing Computable iff there is a turing machine M such that:

From initial state (s, ϵ, [x1, . . . , xn]) (tape head at the leftmost 0), M halts if and only if f(x1, . . . , xn) ↓, and
halts with the tape containing a list, the first element of which is y such that f(x1, . . . , xn) = y.

More formally, given M = (Q,
∑

, s, δ) to compute f :
f(x1, . . . , xn) ↓ ∧f(x1, . . . , xn) = y ⇔ (s, ϵ, [x1, . . . , xn]) →∗

M (∗, ϵ, [y, . . . ])

Register → Turing Machine

It is also possible to simulate any register machine on a turing machine. As we can encode lists of numbers on the
tape, we can simply implement the register machine operations as operations on integers on the tape.

Hence Register Machine Computable ⇒ Turing Machine Computable.

Notions of Computability

Every computable algorithm can be expressed as a turing machine (Church-Turing Thesis). In fact Turing Machines,
Register Machines and the Lambda Calculus are all equivalent (all determine what is computable).

� Partial Recursive Functions Godel and Kleene (1936)

� λ-Calculus Church (1936)
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� canonical systems for generating the theorems of a formal system Post (1943) and Markov (1951)

� Register Machines Lambek and Minsky (1961)

� And many more . . . (multi-tape turing machines, parallel computation, turing machines embeded in cellular
automata etc)

49



Chapter 7

Lambda Calculus

Type Systems for Programming Languages Extra Fun! 7.0.1

The third-year type systems module contains an introduction to lambda calculus that can be found here.

7.1 Lambda Calculus

7.2 Syntax

Bound Variables x is bound inside λx . M (it is bound within the scope of M)
Free Variables y is free inside λx . M (it is not bound)
Closed Term A λ-term with no free variables, e.g λx y z . x y
Binding Occurences The λ-term’s parameters λx y z . (. . . ), here the x, y and z before the dot.
Left Associativity Lambda Terms are left associative, hence A B C D ≡ (((A) (B)) (C)) (D)

7.2.1 Bound and Free Formally

FreeV ariables (x) = {x}
FreeV ariables (λx . M) = FreeV ariables(M) \ {x}
FreeV ariables (M N) = FreeV ariables(M) ∪ FreeV ariables(N)

α-equivalence Definition 7.2.1

M =α N if and only if N can be obtained from M by renaming bound variables (or vice-versa)

Hence the free variable set must be the same (not renamed).

7.2.2 Substitution

M [new/old] means replace free variable old with new in M

50

https://oliverkillane.github.io/Imperial-Computing-Notes/60023%20-%20Type%20Systems%20for%20Programming%20Languages/


Only free variables can be substituted. Formally we can describe this as:

x[M/y] =

{
M x = y

x x ̸= y

(λx . N)[M/y] =

{
λx . N x = y (x will be bound inside, so cannot go further)

λz . N [z/x][M/y] x ̸= y (To avoid name conflicts with M , z ̸∈ ((FV (N) \ {x}) ∪ FV (M) ∪ {y}))

(A B)[M/y] = (A[M/y]) (B[M/y])

� For variables, simply check if equal.

� For lambda abstractions, if the old term is bound, cannot go further, else, switch the bound term for some
term not free inside, in the substitution, and not the new value replacing.

� For applications, simply substitute into both λ-terms.

Basic Substitution Example Question 7.2.1

x[y/x] = y

y[y/x] = y

(x y)[y/x] = y y

λx . x y[y/x] = λx . x y

7.3 Semantics

(λx . M) N →β M [N/x]

M →β M ′

λx . M →β λx . M ′
M →β M ′

M N →β M ′ N

N →β N ′

M N →β M N ′

M =α M ′ M ′ →β N ′ N ′ =α N

M →β N

� A term of the form (λx . N) M is called a redex.

� A λ-term may have several different reductions. These different reductions for a derivation tree.

7.3.1 Multi-Step Reductions

Steps can be combined using the transitive closure of →β under α-conversion.
M =α M ′

M →∗
β M ′ (Reflexivity of α-conversion)

M →β M ′ M ′ →∗
β M ′′

M →∗
β M ′′ (Transitivity)

Confluence Definition 7.3.1

All derivation paths in the derivation tree that reach some normal form, reach the same normal form.
∀M,M1,M2. [M →∗

β M1 ∧M →∗
β M2 ⇒ ∃M ′.[M1 →∗

β M ′ ∧M2 →∗
β M ′]]
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β Normal Forms Definition 7.3.2

A λ-term is in β-normal form if it contains no redexes, and hence cannot be further reduced.
is in normal form(M) ≜ ∀N. M ̸→β N

has a normal form(M) ≜ ∃M ′. M →∗
β M ′ ∧ is in normal form(M)

If a normal form exists, it is unique.
∀M,N1, N2, . [M →∗

β N1 ∧M →∗
β N2 ∧ is-norm-form(N1) ∧ is-norm-form(N2) ⇒ N1 =α N2]

β-equivalence Definition 7.3.3

An equivalence relation for →β .
M =β N ⇔ ∃T. [M →∗

β T ∧N →∗
β T ]

7.3.2 Reduction Order

For a redex E = (λx . M) N :

� Any redex in M or N is inside of E

� E is outside of any redex in M or N

Innermost Redex Definition 7.3.4

A Redex with no redexes inside of it.

Outermost Redex Definition 7.3.5

A Redex with no redexes outside of it.

We can choose several different orders by which to reduce.

Normal Order Definition 7.3.6

� Reduce the leftmost outermost redex first.

� This always reduces a λ-term to its normal form if one exists.

� Can perform computations on unevaluated function bodies.

� Not used in any programming languages.

Call By Name Definition 7.3.7

� Reduce the leftmost outermost first.

� Does not reduce the inside of λ-abstractions.

� Does not always reduce a λ-term to its normal form.

� Passes unevaluated function parameters into function body. Only evaluating a parameter when it is
used.

� Used with some variation by haskell, R, and LATEX.

Call By Values Definition 7.3.8

� Reduce the leftmost innermost redex first.

� Does not reduce the inside of λ-abstractions.

� Does not always reduce a λ-term to its normal form.

� Evaluate parameters before passing them to function body.

� Terminates less often than call by name (e.g if a parameter cannot be normalised, but is never used),
but evaluated the parameters only once.

� Used by C, Rust, Java, etc.
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η-equivalence Definition 7.3.9

Captures equality better than =β .
x ̸∈ FV (M)

λx . M x =η M

∀N. M N =η+ M ′ N

M =η+ M ′

Namely if the application of M to another λ-term is equivalent to M ′ applied to the same λ-terms then M
and M ′ are equivalent.

For example with the basic application of f :
λx . f x ̸=β f however (λx . f x) M =β f M and λx . f x ̸=η f

7.3.3 Definability

λ-definable Definition 7.3.10

Partial function f : Nn ⇀ N is λ-definable if and only if there is a closed λ-term M where:
f(x1, . . . , xn) = y ⇔ M x1 . . . xn =β y

And
f(x1, . . . , xn) ↑⇔ M x1 . . . xn has no normal form

λ-definable specifies what can be computed by the lambda calculus, and is equivalent to Register Machine Com-
putable or Turing Machine Computable.

7.4 Encoding Mathematics

7.4.1 Encoding Numbers

We represent natural numbers as Church Numerals. These are n repeated applications of some function f .
n ≜ λf . λx . f(. . . (f x)︸ ︷︷ ︸

n times

. . . ) with n applications of f

0 ≜ λf . λx . x

1 ≜ λf . λx . f x

2 ≜ λf . λx . f f x

3 ≜ λf . λx . f f f x

4 ≜ λf . λx . f f f f x

5 ≜ λf . λx . f f f f f x

...

7.4.2 Encoding Addition

Addition is represented as a function application:
m = λf . λx . f(. . . (f x)︸ ︷︷ ︸

m times

. . . ) n = λf . λx . f(. . . (f x)︸ ︷︷ ︸
n times

. . . )

m+ n ≜ (λm . λn . λf . λx . m f (n f x))︸ ︷︷ ︸
+

m n

By applying the functions, we have f applied m+ n times, representing the Church Numeral m+ n.

7.4.3 Encoding Multiplication

m = λf . λx . f(. . . (f x)︸ ︷︷ ︸
m times

. . . ) n = λf . λx . f(. . . (f x)︸ ︷︷ ︸
n times

. . . )

m× n ≜ (λm . λn . λf . m (n f))︸ ︷︷ ︸
×

m n
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Each application of the f inside m is substituted for n applications of f , using the above λ-abstraction we get m×n
applications of f .

7.4.4 Exponentiation

m = λf . λx . f(. . . (f x)︸ ︷︷ ︸
m times

. . . ) n = λf . λx . f(. . . (f x)︸ ︷︷ ︸
n times

. . . )

mn ≜ (λm . λn . n m)︸ ︷︷ ︸
exponential

m n

7.4.5 Conditional

m = λf . λx . f(. . . (f x)︸ ︷︷ ︸
m times

. . . )

if m = 0 then x1 else x2 ≜ (λm . λx1 . λx2 . m (λz . x2) x1)︸ ︷︷ ︸
if zero

m

If m = 0 = λf . λx . x then x is returned, which will be x1.

If not zero, then the f applied returns x2, so any number of applications of f , results in x2.

7.4.6 Successor

m = λf . λx . f(. . . (f x)︸ ︷︷ ︸
m times

. . . )

We simply take m and apply f one more time
m+ 1 ≜ (λm . λf . λx . f (m f x))︸ ︷︷ ︸

succ

m

7.4.7 Pairs

We can encode pairs as a function, with a selector s function. Hence by supplying first or second as the selector,
we can use the pair.

newpair(a, b) ≜ (λa . λb . λs . s a b)︸ ︷︷ ︸
newpair

a b ≡ (λa b s . s a b)︸ ︷︷ ︸
newpair

a b

first(p) ≜ p (λx . λy . x)︸ ︷︷ ︸
first

≡ p (λx y . x)︸ ︷︷ ︸
first

second(p) ≜ p (λx . λy . y)︸ ︷︷ ︸
second

≡ p (λx y . y)︸ ︷︷ ︸
second

Q2bv - 2020/21 Exam Question 7.4.1

. . . continued from 2bvi - 2020/21

Using Church numerals, give an equivalent λ-term (program) C, i.e. for all n > 0 we have C n →∗
β m if and

only if the execution of register machine K also halts with R0 = m when started with R0 = n.

You can use the pre-defined operations from the lecture (plus, mult, succ, pred, ifz, etc.) and also
integer division (div) and reminder (rem). It helps to use various subroutines.

Q2d - 2021/22 Exam Question 7.4.2

Consider the following recursively defined sequence of integers xi:
x0 = x1 = 1

xi = x2
i−2 + 2xi−1

Implement this in the λ-calculus using Church numerals, i.e. write a lambda term f such that f n reduces
to xn.
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You can use functions defined in the lecture, e.g plus, mult, ifz etc. It might help to define subrou-
tines.

Sketch the execution of f 2 (you can use →∗
β rather than →β).

7.4.8 Predecessor

m = λf . λx . f(. . . (f x)︸ ︷︷ ︸
m times

. . . )

We cannot remove applications of f , however we can use a pair to count up until the successor is m.

Hence we first need a function to get the next pair from the current:
transition p ≜ (λn . newpair (second n) ((second n) + 1))︸ ︷︷ ︸

transition function

p

We can then simply run the transition n times on a pair starting by using f = transition and x = newpair 0 0.

pred(n) ≜

{
0 n = 0

n− 1 otherwise

pred(n) ≜ (λn . n transition (newpair 0 0) first)︸ ︷︷ ︸
predecessor

n

A simpler definition of predecessor is:
pred(n) ≜ (λn . λf . λx . n (λg . λh . h (g f)) (λu . x) (λu . u))︸ ︷︷ ︸

predecessor

n

7.4.9 Subtraction

We can use the predecessor function for subtraction. By applying the predecessor function n times on some number
m we get m− n.

m− n ≜ (λm . λn . m pred n)︸ ︷︷ ︸
subtract

m n

7.5 Combinators

Combinator Definition 7.5.1

A closed λ-term (no free variables), usually denoted by capital letters that describe

I ≜ λx . x I(x) ≜ x

K ≜ λx y . x K(x, y) ≜ x

S ≜ λx y z . x z (y z) S(x, y, z) ≜ x(z)(y(z))

T ≜ λx y . y x T (x, y) ≜ y(x)

C ≜ λx y z . x z y C(x, y, z) ≜ x(z)(y)

V ≜ λx y z . z x y V (x, y, z) ≜ z(x)(y)

B ≜ λx y z . x (y z) B(x, y, z) ≜ x(y(z))

B′ ≜ λx y z . y (x z) B′(x, y, z) ≜ y(x(z))

W ≜ λx y . x y y W (x, y) ≜ x(y)(y)

Y ≜ λg . (λx . g (x x)) (λx . g (x x)) Y (f) ≜ (λx → f(x(x)))(λx → f(x(x)))

Only SKI are required to define any computable function (can remove even λ-abstraction, this is called SKI-
Combinator Calculus).

The Y -Combinator is used for recursion. In one step of β-reduction:
Y f →β f (Y f)

We cannot define λ-terms in terms of themselves, as the λ-term is not yet defined, and infinitely large λ-terms are
not allowed.
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We can use the Y − Combinator to create recursion in the absence of recursive λ-term definitions.

Fixed-Point Combinator Definition 7.5.2

A higher order function (e.g fix) that returns some function of itself:
fix f = f(fix f)

fix f = f(f(. . . f(fix f) . . . )) (after repeated application)

Factorial Example Question 7.5.1

fact(n) =

{
1 n = 0

n× fact(n− 1) otherwise

If recursive definitions for λ-terms were allows, we could express this as:
fact ≜ λn . if zero n 1 (multiply n (fact (pred n)))

≜ (λf . λn . if zero n 1 (multiply n (f (pred n)))) fact

Since we can use the above form (higher order function applied to itself) with the Y combinator.
fact ≜ Y (λf . λn . if zero n 1 (multiply n (f (pred n))))

Q2c - 2020/21 Exam Question 7.5.1

Consider the term Y′ = UU with U = λu x . x uux.

Why is Y (and U) a combinator? Show that it is an alternative implementation of the fixed-point
combinator.
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Chapter 8

Credit

Image Credit

Front Cover Analytical Engine - Science Museum London

Content

Based on the Models of Computation course taught by Dr Azelea Raad and Dr Herbert Wiklicky.

Register Machine Sim Linked simulator was developed by Yı̀táng Chén.

These notes were written by Oliver Killane.
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