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Chapter 1

Elementary Probability Theory

Probability theory is a mathematical formalism to describe and quantify uncertainty.

Uses of probability include examples such as:

� Finding distribution of runtimes & memory usage for software.

� Response times for database queries.

� Failure rate of components in a datacenter.

1.1 Sample Spaces and Events

Sample Space Definition 1.1.1

The set of all possible outcomes of a random experiment. The set is usually denoted with set notation, and
can be finite, countably or uncountably infinite.

For example:

Experiment Sample Space
Coin Toss S = {Heads, Tails}
6-Sided Dice Roll S = {1, 2, 3, 4, 5, 6}
2 Coin Tosses S = {(H,H), (H,T ), (T,H), (T, T )}
Choice of Odd number S = {x ∈ N|∃y ∈ N.[2y + 1 = x]}

Event Definition 1.1.2

Any subset of the sample space E ⊆ S (a set of possible outcomes).

� null event(∅) Empty event, can be used for impossible events.

� universal event (S) Event contains entire sample space and is therefore certain.

� elementary events Singleton subsets of the sample space (contain one element).

For example:

Event Set of Event Sample Space
6-Sided Dice Rolls 1 E = {1} S = {1, 2, 3, 4, 5, 6}
6-Sided Dice Rolls Even E = {2, 4, 6} S = {1, 2, 3, 4, 5, 6}
6-Sided Dice Rolls 7 E = ∅ S = {1, 2, 3, 4, 5, 6}
2 Coin toss get 2 Tails E = {(T, T )} S = {(H,H), (H,T ), (T,H), (T, T )}
Random Natural Number is 4 E = {4} S = N
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� If we perform a random experiment with outcome S∗ ∈ S. If s∗ ∈ E, then event E has occurred.

� If E has not occurred (s∗ ̸∈ E) then s∗ ∈ E.

� The set {s∗} is an elementary event.

� Null event ∅ never occurs, the universal event S always occurs.

1.1.1 Set Operations on Events

� Union / Or ⋃
i

Ei = {s ∈ S|∃i.[s ∈ Ei]}

Occurs if at least one of the events Ei has occurred (has union of event sets).

If 4 is rolled on a 6-sided dice, then union of (is 3) and (is 4) occurred.

� Intersection / And ⋂
i

Ei = {s ∈ S|∀i.[s ∈ Ei]}

Occurs if all the events Ei occur.

If 4 is rolled on a 6-sided dice, the intersection of (is even) and (is 4) occurred.

� Mutual Exlusion
E1 ∩ E2 = ∅

If sets are disjoint, then they are mutually exclusive (cannot occur simultaneously).

For a 6-sided dice the events (is 4) and (is 6) are mutually exclusive.

1.1.2 Probability

When determining the probability of every subset E ⊆ S occurring:

� S is Finite Can easily assign probabilites.

� S is countable Can assign probabilites.

� S is uncountably infinite
Can initially assign some collection of subsets probabilities, but it then becomes impossible to define probabil-
ities on reamining subsets.

Cannot make probabilities sum to 1 with reasonably axioms.

For this reason when defining a probability function on sample space S, we must define the collection of subsets we
will measure.

The subsets are referred to as F and must be:

4



1. nonempty (S ∈ F)

2. closed under complements E ∈ F ⇒ E ∈ F

3. closed under countable union E1, E2, · · · ∈ F ⇒
⋃

i Ei ∈ F

A collection of sets is known as σ-algebra.

Probability Measure Definition 1.1.3

A function P : F → [0, 1] on the pair (S,F) such that:

Axiom 1. ∀E ∈ F .[0 ≤ P (E) ≤ 1]
Axiom 2. P (S) = 1
Axiom 3. Countably additive, for disjoint sets E1, E2, · · · ∈ F : P (

⋃
i Ei) =

∑
i P (Ei)

P (E) provides the probability (between 0 and 1 inclusive) that a given event occurs.

From the axioms satisfied by a probability measure we can derive that:

1. P (E) = 1− P (E)

2. P (∅) = 0

3. For any events E1 and E2: P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2)

1.2 Interpretations of Probability

1.2.1 Classical Interpretation

Given S is finite and the elementary events are equally likely:

P (E) =
|E|
|S|

We can also extend this uniform probability distribution to infinite spaces by considering measures such as area, mass
or volume.

1.2.2 Frequentist Interpretation

Through repeated observations of identical random experiments in which E can occur, the proportion of experiments
where E occurs tends towards the probability of E.

At an infinite number experiments, the proportion of occurrences of E is equal to P (E).

Central Limit Theorem Extra Fun! 1.2.1

This can also be considered in terms of central limit theorem, where the greater the sample size taken from
some distribution (with defined mean µ), the closer the mean of the sample to the distribution’s mean. (more
readings results in less variance in the sample means as they converge on the distribution’s mean)
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1.2.3 Subjective Interpretation

Probability is the degree of belief held by an individual.

For example if gambling:
Option 1: E occurs win £1, E occurs win £0
Option 2: Regardless of outcome get £P (E)

.

Either outcome, the gambler receives £P (E). The value of P (E) is the value for which the individual is indif-
ferent about the choice between option 1 or 2. It is the individuals probability of event E occurring.

1.3 Joint Events and Conditional Probability

We commonly need to consider Join Events (where two events occur at the same time).

Independent Events Definition 1.3.1

Two events are independent if the occurence of one does not affect the other. Given E1 and E2 are independent:

E1 and E2 independent ⇔ P (E1 occurrs and E2 occurs) = P (E1)× P (E2)

More generally, the set of events {E1, E2, . . . } are independent if for any finite subset {Ei1 , Ei2 , . . . , Ein}:

p(

n⋂
j=1

Eij ) =

n∏
j=1

P (Eij )

If E1 and E2 are independent, then so are E1 and E2.

For example with a coin toss, subsequent coin tosses do not effect the next coin toss’s probability of
heads.

We can show that if E1 and E2 are independent, so are E1 and E2:

(1) F = (E1 ∩ E2) ∪ (E1 ∩ E2) By set operations
(2) P (E2) = P (E1 ∩ E2) + p(E1 ∩ E2) As 1 was a disjoint union, Axiom 3
(3) P (E1 ∩ E2) = P (E2)− P (E1 ∩ E2)
(4) P (E1 ∩ E2) = P (E2)− P (E1)× P (E2)
(5) P (E1 ∩ E2) = P (E2)× (1− P (E1)
(6) P (E1 ∩ E2) = P (E2)× P (E1) By P (E) = 1− P (E)

We can show that P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2):

(1) E1 ∪ E2 = E1 ∪ (E2 ∩ E1) From set theory
(2) P (E1 ∪ E2) = P (E1 ∪ (E2 ∩ E1)) By Axiom 3
(3) P (E1 ∪ E2) = P (E1) + P (E2 ∩ E1)
(4) P (E2 ∩ E1) = P (E2)− P (E1 ∩ E2) By 3 of the previous proof and as E1 and E2 are independent

Dice for Money Example Question 1.3.1

We can construct a Probability Table:

Dice
Totals

1 2 3 4 5 6

Coin
H 1/12 1/12 1/12 1/12 1/12 1/12 1/2
T 1/12 1/12 1/12 1/12 1/12 1/12 1/2

Totals 1/6 1/6 1/6 1/6 1/6 1/6

We can determine the probability of any event by summing the probabilities of elementary events represented
by cells in the table.

P (H) is called a marginal probability, as it the probability of one event occurring irrespective of the
other (the dice in this case).

P ((H, 3)) is called a joint probability as it involves both events (dice roll and the coin toss).
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Roll of the Die Example Question 1.3.2

A crooked die (called a top) has the same faces on either side.

We flip the coin, then if it is heads we use the normal die, else we use the top.

Dice
Totals

1 2 3 4 5 6

Coin
H 1/12 1/12 1/12 1/12 1/12 1/12 1/2
T 1/6 0 1/6 0 1/6 0 1/2

Totals 1/4 1/12 1/4 1/12 1/4 1/12

We can now see that P ({(H, 3)}) ̸= P ({H})×P ({3}) and hence they are dependent, as the dice roll depends
on the coin toss.

1.4 Conditional Probability

For two events E and F in sample space S, where P (F ) ̸= 0:

P (E|F ) =
P (E ∩ F )

P (F )

Probability of E given F is the probability of both occurring over the probability of F .

Independence Extra Fun! 1.4.1

If E and F are independent:

P (E|F ) =
P (E ∩ F )

P (F )
=

P (E)× P (F )

P (F )
= P (E)

Conditional Independence Definition 1.4.1

P (•|F ) defines a probability measure obeying the axioms of probability on set F (When have just reduced S
to F ).

Three events E1, E2, F are conditionally independent if and only if:

P (E1 ∩ E2|F ) = P (E1|F )× P (E2|F )

W Example Question 1.4.1

hat is the probability the dice rolls a 3 given the dice rolls an odd number?

P ({3}|{1, 3, 5}) =
P ({3} ∩ {1, 3, 5})

P ({1, 3, 5})
=

P ({3})
P ({1, 3, 5})

=
1/6
1/2

=
1

3

Go big or go home! Example Question 1.4.2

Throw a die from each hand. What is the probability the die thrown from the left is larger than the die
thrown from the right.

The sample space is:

S =



(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)



7



We want the event such that the left value of the pair is larger.

For value 1 there are 0 possible, for 2 there is 1 and so on.

(1 : 0), (2 : 1), (3 : 2), (4 : 3), (5 : 4), (6 : 5)

Hence there are 0 + 1 + 2 + 3 + 4 + 5 = 15 possible pairs with the left larger than the right.

P (E) =
15

36
=

5

12

However if we know the left or right die, we can determine a new probability. For example if we know the
left die is 4 then we know there are 6 pairs with the left as 4, and 3 of those pairs have a smaller right.

P (E|4) =
3

6
=

1

2

Bayes Theorem Definition 1.4.2

For two events E and F we have:

P (E ∩ F ) = P (F )× P (E|F ) = P (F )×
P (E ∩ F )

P (F )
= P (E)× P (F |E) = P (E)×

P (E ∩ F )

P (E)

Hence we can deduce:

P (E|F ) =
P (E)× P (F |E)

P (F )
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Partition Rule Definition 1.4.3

Given a set of events {F1, F2, . . . } which forms a partition of S (disjoint sets that contain all of F ).

For any event E ⊆ S:

P (E) =
∑
i

P (E|Fi)× P (Fi)

Proof:

(1) E = E ∩ S = E ∩
⋃

i Fi =
⋃

i(E ∩ Fi) By set theory and disjointness of partitions.
(2) P (E) = P (

⋃
i(E ∩ Fi))

(3) P (E) =
∑

i P (E ∩ Fi) By axiom 3 and disjointness of partitions.
(4) P (E) =

∑
i P (E|Fi)× P (Fi)

Law of Total Probability Definition 1.4.4

Given some event E and events {F1, F2, . . . }:

P (E) =
∑
i

P (E ∩ Fi)

For example the 6-Sided dice, E = H and F = [{1}, {2}, {3}, {4}, {5}, {6}], the marginal probability is the
same as the sum of all cells in row H.

Using complement as a partition we can deduce that:

P (E) = P (E ∩ F ) + P (E ∩ F )

P (E) = P (E|F )× P (F ) + P (E|F )× P (F )

1.4.1 Terminology Recap

� Conditional Probabilities Of the form P (E|F ).

� Joint Probabilities Of the form P (E ∩ F ).

� Marginal Probabilities Of the form P (E).
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Chapter 2

Random Variables

Probability Space Definition 2.0.1

(S,F , P )

Models a random experiment where probability measure P (E) is defined on subsets E ⊆ S belonging to sigma
algebra F .

Within a sample space we can study quantities that are a function of randomly occurring events (e.g temperature,
exchange rates, gambling scores).

Random Variable Definition 2.0.2

A random variable is a mapping from the sample space to the real numbers, for example random variable X:

X : S → R

Each element in the sample space s ∈ S is assigned to a numerical value by X(s).

When referring to the value of a random variable we use its name, e.g X in P (5 < X ≤ 30)

� Simple Finite set of possible outcomes. (e.g dice faces)

� Discrete Countable outcomes/support/range. (e.g distance (m))

� Continuous Can be a continuous range (e.g temp)

Single Fair Dice Roll Example Question 2.0.1

S = {1, 2, 3, 4, 5, 6}, for any s ∈ S.P ({s}) =
1

6
.

We can define random variable X such that:

X(1) = 1, X(2) = 2, X(3) = 3, X(4) = 4, X(5) = 5, X(6) = 6

Then we can use X:
PX(1 < X ≤ 5) = P ({2, 3, 4, 5}) = 2/3

PX(X ∈ {2, 3}) = P ({2, 3}) = 1/3

We can also define random variable Y such that:

Y (ϵ) =

{
0 ϵ is odd

1 ϵ is even

And hence:
PY (Y = 0) = P ({1, 3, 5}) = 1/2

10



2.1 Induced Probability

The probability measure P defined on a sample space S induces a probability distribution on the random variable
in R (distribution of its outcomes).

SX = {s ∈ S|X(s) ≤ x}

Such that:
PX(X ≥ x) = P (SX)

Note that unless there is ambiguity, PX(. . . ) will often be written as P (. . . ).

Heads and Tails Example Question 2.1.1

We define random variable X : {H,T} → R over the continuum R such that:

X(T ) = 0 and X(H) = 1

SX =


∅ if x < 0

{T} if 0 ≤ x < 1

{H,T} if x ≥ 1

X represents the number of heads flipped.

PX(X ≤ x) = P (SX) =


P (∅) = 0 if x < 0

P ({T}) = 1/2 if 0 ≤ x < 1

P ({H,T}) = 1 if x ≥ 1

Now we can use X to compactly show probabilities.

PX(X = 1) = 1/2

Multiple Coin Flips Example Question 2.1.2

S = {TTT, TTH, THT,HTT, THH,HHT,HTH,HHH}

We can define X (number of heads):

X(s) =


0 s = TTT

1 s ∈ {TTH, THT,HTT}
2 s ∈ {THH,HHT,HTH}
3 s = HHH

Hence given 3 coin tosses:

PX(X > 1) More than one head
PX(X < 3) Not all heads
PX(X ≤ 1) At least one head

Support/Range Definition 2.1.1

The set of all possible values of a random variable X:

X ≡ supp(X) ≡ X(S) = {x ∈ R|∃s ∈ S.X(s) = x}

As S contains all possible experiment outcomes, supp(X) contains all possible values/outcomes for the random
variables X.

PX(X ≤ x) is defined for all x ∈ supp(X)

11



2.2 Cumulative Distributions

Cumulative Distribution Function (FX) Definition 2.2.1

The cumulative distribution function (cfd) of a random variable X is the probability where X takes some
value less than or equal to some x:

FX : R → [0, 1] such that FX(x) = Px(X ≤ x)

To be a valid cfd, 3 criteria must be met:

1. Probability between 0 and 1 ∀x ∈ R.0 ≤ FX(x) ≤ 1

2. Monotonicity ∀x1, x2 ∈ Rx1 < x2 ⇒ FX(x1) ≤ FX(x2)

3. Infinite Bounds FX(−∞) = 0, FX(∞) = 1

For any random variable a cfd is right-continuous (a result of monotonicity).

x1 > x2 > x3... > x ⇒ FX(x1) >= FX(x2) >= ... >= FX(x)

We can determine the probability over finite intervals using the cumulative distribution:

for (a, b] ⊆ R PX(a < X ≤ b) = FX(b)− FX(a)

Distributions

Probability Mass Function (pX) Definition 2.2.2

Also called probability function gives the probability that a discrete random variable is exactly equal to a value.

The sample space S is mapped onto elements in the support of X (one-to-one).

We can then partition the sample space into a countable, disjoint collection od event subsets:

s ∈ Ei ⇔ X(s) = xi, i = 1, 2 . . .

A probability mass function is valid if and only if:

1. No negative probabilities ∀x ∈ supp(X). pX(x) ≥ 0

2. Probabilities sum to 1
∑

x∈supp(x) pX(x) = 1

2.3 Discrete Random Variable

For a discrete random variable we define the probability mass function as:

pX(xi) = P (X = xi) = P (Ei) where xi ∈ supp(X) and xi is the outcome of event Ei

We can also define using cfds:

FX(xi) =

i∑
j=1

pX(xj) ⇔ pX(xi) = FX(xi)− FX(xi−1) where i = 2, 3 . . .

Or more simply:

pX(xi) = PX(X = xi) = P (X ≤ xi)− P (X ≤ xi−1) = FX(xi)− FX(xi−1)

When graphed, FX is a monotonically increasing, stepped function with jumps at points in S(X).
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Six Sided Dice Example Question 2.3.1

Here we have X representing the value of the dice roll. We can plot the cumulative distribution (showing
probability a dice roll is less than or equal to a given value).

Discrete CFDs have several properties:

� Limiting Cases
lim

x→−∞
FX(x) = 0 lim

x→∞
FX(x) = 1

At ∞ the whole set of outcomes is covered, probabilities sum to 1. At −∞ none are covered.

� Continuous from the right
For x ∈ R lim

h→0+
FX(x+ h) = FX(x)

Moving from the right to the left the probability will reduce and tend towards the value.

� Non-Decreasing
a < b ⇒ FX(a) ≤ FX(b)

As it is cumulative, the value can only grow larger moving right.

� Can cover a range
For a < b. P (a < X ≤ b) = FX(b)− FX(a)

13



Poisson Distribution Definition 2.3.1

A discrete probability distribution expressing the probability of a given number of events occuring in a fixed
time interval, given a constant mean.

Pois(λ) =
λke−λ

k!
where k is the number of occurrences

e.g What is the probability exactly 7 people buy pizzas at a stall in one hour, given on average is 4 people
per hour?

X ≈ Poisson(4)

For a poisson distribution the mean (expected) and variance are equal.

E(X) = V ar(X)

P (X = 7) =
47e−4

7!

14



2.4 Link with Statistics

We can consider a set of data as realisations of a random variable defined on some underlying population of the data.

� Frequency histogram is an empirical estimate for the pmf.

� Cumulative histogram is an empirical estimate of the cdf.

2.5 Expectation

Expected Value Definition 2.5.1

The expectation of a discrete random variable X is:

EX(X) =
∑
x

xp(x)

Also referred to as µX it is the mean value of the distribution.

E(g(X)) =
∑
x

g(x)pX(x)

E(a×X + b) = a× E(X) + b

E(a× g(X) + b× f(X)) = a× E(g(X)) + b× E(f(X))

Given another distribution Y :
E(X + Y ) = E(X) + E(Y )

Dice Rolls Example Question 2.5.1

Given random variable X representing the value of a dice roll:

X(n) = n where 1 ≥ n ≥ 6

P (X = x) =

{
1/6 1 ≥ n ≥ 6

0 otherwise

We can get the expected as:

E(X) = 1/6 × 1 + 1/6 × 2 + 1/6 × 3 + 1/6 × 4 + 1/6 × 5 + 1/6 × 6 = 21/6 = 3.5

We can base scoring on the dice roll:
score(x) = 4× x+ 2

Hence we can calculate that the expected score is E(score(X)) = 4× 3.5 + 2 = 16.

Dice and Coins Example Question 2.5.2

Given random variable D of a fair dice, and fair coin C:

P (D = x) =

{
1/6 1 ≥ n ≥ 6

0 otherwise
and P (C = x) =

{
1/2 x ∈ {H,T}
0 otherwise

Given score = dice roll + 1 if coin flip is heads what is the expected score?

E(D) = 3.5 E(C) = 0.5 E(score) = 3.5 + 2 ∗ 0.5 = 4.5

15



2.6 Variance

Moment Definition 2.6.1

A function which measures the shape of a function’s graph.

The nth moment of a random variable is the expected value of its nth power:

nth moment of X = µX(n) = E(Xn) =
∑
x

xnp(x)

� First Moment The expected value.

� Central Moment The variance (E[(X − E(X))2])

� Standardized Moment The skew (
E(X − E(X))3

sd(X)3
)

Variance Definition 2.6.2

The expectation of the deviation from the expected/mean value squared.

V ar(X) = V arX(X) = σ2
X = E[(X − E(X))2] = E(X2)− (E(X))2

Note that:
V ar(a×X + b) = a2V ar(X)

Standard Deviation Definition 2.6.3

The square root of the variance.
σX = sdX(X) =

√
V arX(X)

Dice Roll Example Question 2.6.1

For a random variable representing a dice X:

V ar(X) = E(X2)− (E(X2)) =
∑
x

x2p(x)− (
∑
x

xp(x))2 = 91/6 − 49/4 = 35/12

Skewness Definition 2.6.4

A measure of asymmetry (the standardized moment):

γ1 =
E(X − E(X))3

sd(X)3
=

E(X − µ)

σ3
where µ = E(X), σ = Sd(X)
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2.7 Sum of Random Variables

Given random variables X1, X2, . . . , Xn (not necessarily independent, and potentially from different distributions),
the sum is:

The sum Sn =

n∑
i=1

Xi and the average is
Sn

n

(The sum of the outcomes from all random variables)

The expected/mean value of Sn (expected value of the sum of all the random variables) is:

E(Sn) =

n∑
i=1

E(Xi) and E(
Sn

n
) =

∑n
i=1 E(Xi)

n

� All independent

V ar(Sn) =

n∑
i=1

V ar(Xi) and V ar(
Sn

n
) =

∑n
i=1 V ar(Xi)

n2

� All independent and Identically Distributed
Given that for all i, E(Xi) = µX and V ar(Xi) = σ2

X :

E(
Sn

n
) = µX and V ar(

Sn

n
) =

σ2
X

n

Important Discrete Random Variables

Bernouli Distribution Definition 2.7.1

For an experiment with only two outcomes, encoded as 1 and 0.

ForX ∼ Bernoulli(p) where x ∈ S(X) = {0, 1} and 0 ≤ p ≤ 1:

PMF Expected Variance
pX(x) = px(1− p)1−x µ = E(X) = p σ2 = V ar(X) = p(1− p)

Binomial Distribution Definition 2.7.2

Given n trials with two options, binomial models the number of outcomes. (e.g 3 coin tosses, number of ways
to get 2 heads out of total outcomes).

For X ∼ Bionomial(n, p) where X takes values 0, 1, 2, . . . , n and 0 ≤ p ≤ 1:

PMF Expected Variance Skewness

pX(x) =
(
n
x

)
px(1− p)n−x µ = E(X) = np σ2 = V ar(X) = np(1− p) γ1 =

1− 2p√
np(1− p)

Note that choice is:
(
n
x

)
=

n!

x!(n− x)!

Poisson Distribution Definition 2.7.3

Given a constant mean number of events per fixed itme interval, provides probabilities of different numbers
of events occuring. (e.g sell on average 6 cookies an hour, what is the probability 10 cookies are sold in a
given hour).

For X ∼ Poisson(λ) where λ is the mean number of events and λ > 0:

PMF Expected Variance Skewness

pX(x) =
e−λλx

x!
µ = E(X) = λ σ2 = V ar(X) = λ γ1 =

1
√
λ

Note that for poisson the skew is always positive (but decreases as λ increases), and E(X) ≡ V ar(X).
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Geometric Distribution Definition 2.7.4

A potentially infinite number of trials to get an outcome (e.g attempts required to shoot a target, given
probability of hit).

We can consider it infinite Bernoulli trials X1, X2, . . . , where X = {i|Xi = 1} (X is number of at-
tempts to get outcome 1).

For X ∼ Geometric(p) where X takes all values in Z+ = {1, 2, . . . } and 0 ≤ p ≤ 1:

PMF Expected Variance Skewness

pX(x) = p(1− p)x−1 µ = E(X) =
1

p
σ2 = V ar(X) =

1− p

p2
γ1 =

2− p
√
1− p

Alternatively we can consider the number of trials before getting an outcome:
If X ∼ Geometric(P ) consider Y = X − 1 where Y takes values N = {0, 1, 2, . . . }:

PMF Expected Variance Skewness

pY (x) = p(1− p)y µ = E(Y ) =
1− p

p
Unchanged Unchanged

Discrete Uniform Distribution Definition 2.7.5

Where a discrete number of outcomes are equally likely (e.g fair dice, colour wheel).

For X ∼ U({1, 2, . . . , n}):

PMF Expected Variance Skewness

pX(x) =
1

n
µ = E(X) =

n+ 1

2
σ2 = V ar(X) =

n2 − 1

12
γ1 = 0

2.8 Poisson Limit Theorem

We can use the Binomial Distribution to approximate the Poisson Distribution:

Poisson(λ) ≈ Binomial(n, p) when λ = np and n is very large, p is very small

This is as for a Poisson distribution mean and variance are equal and for binomial, mean is np and variance np(1−p)
so as p gets smaller (and n larger) np ≈ np(1− p).
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Chapter 3

Continuous Random Variables

For continuous random variables we want to track quantities in R (e.g temperature, volume, other probabilities).

Induced Probability Terms Extra Fun! 3.0.1

Sx = {s ∈ S|X(s) ≤ x}

PX(X ≤ x) = P (Sx) = FX(x)

Sx is the elements of the sample space up to and including x. Hence the probability of getting Sx is the
cumulative probability.
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Probability Density Function Definition 3.0.1

For a random variable X : S → R the induced probability is defined as:

PX((−∞, x]) = P (SX) = FX(x)

A variable X is absolutely continuous if ∃fX : R → R such that:

FX(x) =

∫ x

u=−∞
fX(u)du

fx(x) = F ′(x) =
d

dx
FX(x)

Where fX is the probability density function (pdf ).

To find probability that X ∈ (a, b]:

PX(a < X ≤ b) = PX(X ≤ b)− PX(X ≤ a) = FX(b)− FX(a) =

∫ b

a

fX(x)dx

� We can use < and ≤ interchangeably as P (X = x) = 0 ⇔ P (X ≤ x) ≡ P (X < x).

� Probability of any event is zero: PX(X = y) = 0, any elementary event {x} where x ∈ R has zero
probability.

� However the sum of a range of events probabilities is not zero.

� Hence the range of a continuous random variable is uncountable (i.e as R is also).

∀x ∈ R.fX(x) >= 0 and

∫ ∞

−∞
fX(x)dx = 1

Defining a continuous random variable Example Question 3.0.1

Given some continuous random variable x with a probability density function given as:

f(x) =

{
cx2 0 < x < 3

0 otherwise

For some unknown constant c
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To find the value of c we use the requirement that the cumulative distribution must sum to 1:∫ 3

0

cx2 = 1⇝ [
cx3

3
]30 = 1⇝ (9c)− 0 = 1⇝ c = 1/9

Hence:

f(x) =


x2

9
0 < x < 3

0 otherwise

Hence we can specify the cumulative probability distribution as:

F (x) =


0 x ≤ 0

x3

27
0 < x < 3

1 x ≥ 0

We can then calculate probabilities using the cumulative distribution:

P (1 < X < 2) = F (2)− F (1) =
23

27
−

13

27
=

7

27
≈ 0.259

3.1 Mean, Variance and Quantiles

Expected (Continuous) Definition 3.1.1

The mean or expected of a continuous random variable X:

µX = EX(X) =

∫ ∞

−∞
xfX(x)dx

For a function of interest that is applied to the random variable g : R → R:

EX(g(X))

∫ ∞

−∞
g(x)fX(x)dx

� E(aX + b) = aE(X) + b

� E(g(X) + h(X)) = E(g(X)) + E(h(X))

Variance (Continuous) Definition 3.1.2

The variance of a continuous random variable X:

σ2
X = V arX(X) = E((X − µX)2) =

∫ ∞

−∞
(x− µX)2fX(x)dx

We can show this as:

V arX(X) =

∫ ∞

−∞
x2fX(x)ds− µ2

X

= E(X2)− (E(X))2

For a linear transformation:
V ar(aX + b) = a2V ar(X)
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Quartiles Definition 3.1.3

The lower, upper quartiles and median are points

For a continuous random variable X, we define the α-Quantile QX(α) where 0 ≤ α ≤ 1 as the low-
est X such that:

P (X ≤ QX(α)) = α or in other words QX(α) = F−1
X (α)

Using QX we can define some standard quantiles:

� Quartiles Lower Quartile (α = 1/4), Median (α = 1/2) and Upper Quartile (α = 3/4)

� Percentiles The nth percentile: α =
n

100

Basic continuous random variable Example Question 3.1.1

Given continuous random variable X:

f(x) =


x2

9
0 < x < 3

0 otherwise

We can calculate the expected:

E(X) =

∫ ∞

−∞
xf(x)dx

=

∫ 0

−∞
xf(x)dx+

∫ 3

0

xf(x)dx+

∫ ∞

3

xf(x)dx

=

∫ 0

−∞
x× 0dx+

∫ 3

0

xf(x)dx+

∫ ∞

3

x× 0dx

=

∫ 3

0

xf(x)dx =

∫ 3

0

x3

9
dx =

[
x4

36

]3
0

=
9

4
= 2.25

We can calculate the variance:

V ar(X) =

∫ ∞

−∞
x2f(x)dx− µ2

X

=

∫ 0

−∞
x2f(x)dx+

∫ 3

0

x2f(x)dx+

∫ ∞

3

x2f(x)dx− µ2
X

=

∫ 3

0

x2f(x)dx− µ2
X =

∫ 3

0

x5

9
dx− µ2

X

= 27− µ2
X = 27− 2.25 = 24.75

22



we can calculate the median, we ignore the range x > 3 as the median must be below this.

0.5 =

∫ x

−∞
f(y)dy =

∫ 0

−∞
f(y)dy +

∫ x

0

f(y)dy =

∫ x

0

f(y)dy

0.5 =

∫ x

0

y2

9
=

[
y3

27

]x
0

=
x3

27

x = 3
√
0.5× 27 ≈ 2.38

3.2 Notable Continuous Distributions

Continuous Uniform Distribution Definition 3.2.1

A continuous random variable with equal probability of being any value within a range:

For X ∼ U(a, b):

PDF CDF Expected Variance

fX(x) =


1

b− a
a < x < b

0 otherwise
FX(x) =


0 x ≤ a

x− a

b− a
a < x < b

1 x ≥ b

µ =
a+ b

2
σ2 =

(b− a)2

12

The standard uniform distribution is defined as X ∼ U(0, 1):

PDF CDF Expected Variance

fX(x) =

{
1 0 < x < 1

0 otherwise
FX(x) =


0 x ≤ a

x a < x < b

1 x ≥ b

µ = 1/2 σ2 = 1/12

Other uniform distributions can be mapped linearly to the standard uniform.

Mapping to Standard Uniform Example Question 3.2.1

Given X ∼ U(2, 5) find the expected, variance and median.

Take Y ∼ U(0, 1), X = 3× Y + 2.

Distribution Expected Variance Median
Y 0.5 1/12 0.5
X 3.5 3/4 3.5
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Exponential Distribution Definition 3.2.2

Given a rate of events λ, what is the probability of waiting X time for the event to occur.

For X ∼ Exponential(λ) or X ∼ Exp(λ) where λ > 0:

PDF CDF Expected Variance

fX(x) = λe−λx where x ≥ 0 FX(x) = 1− e−λx where x ≥ 0 µX =
1

λ
σ2 =

1

λ2

The distribution has the Lack of memory property, namely the time waited already does not affect the next
part of the distribution (same shape).

P (X > x+ t|X > t) =
P (X > x+ t ∩X > t)

P (X > t)
=

P (X > x+ t)

P (X > t)
=

e−λ(x+t)

e−λt
= e−λx = P (X > x)

P (X > x+ t|X > t) = P (X > x)

This distribution can be combined with Poisson. Given X ∼ Poisson(λ) (events occurring in a given time
frame), the time between events is modelled by X ∼ Exponential(λ) (interval time for one event).

There is a variant with θ as the parameter for the distribution where θ =
1

λ
.

Normal Distribution Definition 3.2.3

Given a mean value (µ) and a variance (σ2) from the mean the symmetrical distribution is a Normal
Distribution.

For X ∼ Normal(µ, σ2) or X ∼ N(µ, σ2) where σ > 0:

PDF CDF

fX(x) =
1

σ
√
2π

exp

{
−
(x− µ)2

2σ2

}
FX(x) =

1

σ
√
2π

∫ x

−∞ exp

{
−
(t− µ)2

2σ2

}
dt

The Standard/Unit Normal Distribution is X ∼ N(0, 1):

PDF CDF

ϕ(x) =
1

√
2π

exp

{
−
1

2
x2

}
Φ(x) =

1
√
2π

∫ x

−∞ e
−
t2

2 dt

We can apply linear functions:

X ∼ N(µ, σ2) → and aX + b ∼ N(aµ+ b, a2σ2)

Hence we can use the Standard Normal Distribution:

X ∼ Nµ, σ2 ⇒
X − µ

σ
∼ N(0, 1) and hence P (X ≤ x) = Φ(

x− µ

σ
)

Lognormal Distribution Definition 3.2.4

Given X ∼ N(µ, σ2) and Y = eX we can compute the PDF of Y :

fY (y) =
1

σy
√
2π

exp

[
−
(log y − µ)2

2σ2

]
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3.3 Central Limit Theorem

Moment Generating Function Definition 3.3.1

The moment generating function MX for a continuous random variable X is:

MX(t) = E(etX) =

∫ ∞

−∞
etxfX(x)dx

Assuming the calculus within the E(. . . ) is valid, the nth moment is given by:

E[Xn] =
dnMx(t)

dtn

∣∣∣∣∣
t=0

If the integral does not exist, the characteristic function ϕX(t) = MX(ιt) can be used (ι is imaginary unit).

Expected and Variance Example Question 3.3.1

E[X] =
dMx(t)

dt

∣∣∣∣∣
t=0

=
dE[etX ]

dt

∣∣∣∣∣
t=0

=
d
∫∞
−∞ etxfX(x)dx

dt

∣∣∣∣∣
t=0

=

∫ ∞

−∞
xetxfX(x)dx

∣∣∣∣
t=0

=

∫ ∞

−∞
xe0xfX(x)dx

=

∫ ∞

−∞
xfX(x)dx

E[X2] =
d2Mx(t)

dt2

∣∣∣∣∣
t=0

=
d2E(etX)

dt2

∣∣∣∣∣
t=0

=
d2
∫∞
−∞ etxfX(x)dx

dt2

∣∣∣∣∣
t=0

=
d
∫∞
−∞ xetxfX(x)dx

dt

∣∣∣∣∣
t=0

=

∫ ∞

−∞
x2etxfX(x)dx

∣∣∣∣
t=0

=

∫ ∞

−∞
x2e0xfX(x)dx

=

∫ ∞

−∞
x2fX(x)dx

V ar[X] = E[X2]− (E[X])2
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3.4 Product of Random Variables

Given independent random variables Z1, Z2, . . . , Zn:

E[

n∏
i=1

Zi] =

n∏
i=1

E[Zi]

The sum of the random variables is the products of their Moment Generating Functions.

MZ1+Z2
(t) = E[et(Z1+Z2)] = E[etZ1etZ2 ] = E[etZ1 ]E[etZ2 ] = MZ1

(t)MZ2
(t)

Sn =

n∑
i=1

Zi ⇒ MSn
(t) =

n∏
j=1

MXj(t)

3.5 Central Limit Theorem

Central Limit Theorem Definition 3.5.1

Given X1, X2, . . . , Xn are independent and identically distributed random variables from any distribution
with mean µ and finite variance σ2.

Sn =

n∑
i=1

Xi

Hence we have a distribution with a known expected and variance, so can form a Normal Distribution.

Y = Sn E(Y ) = nµ V ar(Y ) = nσ2

Y = Sn − nµ E(Y ) = 0 V ar(Y ) = nσ2

Y =
Sn − nµ
√
nσ

E(X) = 0 V ar(X) = 1

Y can now be used to approximate a Standard Normal Distribution.

lim
n→∞

Sn − nµ
√
nσ

∼ N(0, 1)

This implies that for large (but finite n):

X ≈ N(µ,
σ2

n
) and

n∑
i=1

Xi ≈ N(nµ, nσ2)

Where X is the average value of the random variables

∑n
i=0 Xi

n
.

The approximation holds for all distributions (including discrete), and is exact when the random vari-
ables are from the same normal distribution.

3.5.1 An attempt at CLT proof

Given the random variables X1, X2, . . . , Xn we can standardize and get their sum:

Zn =
Sn − nµ
√
nσ

=

∑n
i=1 Xi − nµ
√
nσ

=

∑n
i=1(Xi − µ)
√
nσ

=

n∑
i=1

Yi√
nσ

where Yi = Xi − µ

The moment generating function of Zn is the product of the moment generating functions of the Y (all identically
distributed, so identical MGFs).

MZn
(t) =

(
MY

(
t

√
nσ

))
where My is the moment generating function for all Yi

We can then expand the MY around 0 using Taylor’s Theorem:

MY (t) = MY (0) +M ′
Y (0)t+ 1/2M ′′

Y (0)t
2 +O(t3)
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O(t3) is the error term of our approximation, as this is for higher powers, it has a small effect so can be ignored

The derivatives of the MFG are:

M ′
Y (0) = E(Yi) = 0 due to shift performed earlier and M ′′

Y (0) = E(Y 2
i ) = σ2 + E(Yi)

2 == σ2 + 0 = σ2

Hence we can derive:

MY (t) = 1 +
σ2t2

2
+O(t3)

Hence we can scale t, and ignore the error term for simplicity:

MY

(
t

√
nσ

)
= 1 +

t2

2n

As the error term gets very small, we can use limits to get an approximation for MZn
(t).

limn→∞MZn(t) = lim
n→∞

(1 +
t2

2n
+O(n−3/2))n = et2/2

Note that limm→∞(1 +
x

m
)m = ex.

Coin Tossing Example Question 3.5.1

Consider a set of count tosses, each are Bernoulli discrete random variables (take values 0 or 1).

X1, X2, X3, . . . , Xn where µ = p and σ2 = p(1− p)

The total score of toin tosses can be modelled as a binomail distribution:

n∑
i=1

Xi is X ∼ Binomial(n, p) with E(X) = np and V ar(X) = np(1− p)

For large n can also model it as a normal distribution:

n∑
i=1

Xi is X ∼ N(nµ, nσ2) ≡ N(np, np(1− p))

As the number of events (coin tosses) tends to infinity, the distributions tend to look identical.
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Chapter 4

Joint Random Distributions

4.1 CDF

Suppose we have random variables X and Y such that:

X : SX → R and Y : SY → R

We can define Z operating on sample space S such that:

S = S1 × S2 S = {(sX , sY )|sX ∈ SX ∧ sY ∈ SY } Z = (X,Y ) : S → R2

Hence we have a mapping from joint random variable Z(s) onto (X(s), Y (s)).

We can consider this using a graph of the sample space:

Hence the induced probability function for Z will be:

F (x, y) = PZ(X ≤ x, Y ≤ y) = PZ((−∞, x], (−∞, y]) = P (SXY )

Hence we can use the marginals of the joint distribution to get the distribution of the two random variables:

FX(x) = F (x,∞) and FY (y) = F (∞, y)

To be a valid joint cumulative distribution function:

� ∀x, y ∈ R. 0 ≤ F (x, y) ≤ 1

� Monotonicity

∀x1, x2, y1, y2 ∈ R. [x1 < x2 ⇒ F (x1, y1) ≤ F (x2, y1) ∧ y1 < y2 ⇒ F (x1, y1) ≤ F (x1, y2)]

� ∀x, y ∈ R. F (x,−∞) = F (−∞, y) = 0

� F (∞,∞) = 1
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For the probability of intervals we can use the graph mapping concept again:

PZ(x1 < X ≤ x2, Y ≤ y) = F (x2, y)− F (x1, y)

Hence we can get the interval:

PZ(x1 < X ≤ x2, y1 < Y ≤ y2) = F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1)

4.2 PMF

Joint Probability Mass Function Definition 4.2.1

p(x, y) = PZ(X = x, Y = y) where x, y ∈ R

We can get the original pmfs of the two variables as:

pX(x) =
∑
y

p(x, y) and pY (y) =
∑
x

p(x, y)

To be a valid pmf :

� ∀x, y ∈ R. 0 ≤ p(x, y) ≤ 1

�

∑
y

∑
x p(x, y) = 1

4.3 PDF

Fundamental Theorem of Caculus Extra Fun! 4.3.1

The fundamental law that integration and differentiation and the inverse of each other (except for constant
added in integration c, which does not affect definite integrals).
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Joint Probability Density Function Definition 4.3.1

When the variables being joined are continuous we have R× R → R, in this case:

F (x, y) =

∫ y

a=−∞

∫ x

b=−∞
f(b, a) db da

The sum of the probability density function from (x, y) → (−∞,−∞)

Hence by the fundamental theorem of calculus:

f(x, y) =
σ2

σxσy
F (x, y)

We can differentiate to go get the PMF from the PDF.

To be valid:

� ∀x, y ∈ R.f(x, y) ≥ 0

�

∫∞
y=−∞

∫∞
x=−∞ f(x, y) dx dy = 1

Marginal Density Functions Definition 4.3.2

fX(x) =
d

dx
FX(x) =

d

dx
F (x,∞)

=
d

dx

∫ ∞

y=−∞

∫ x

s=−∞
f(s, y) ds dy

And likewise for y:

fY (y) =
d

dy

∫ ∞

x=−∞

∫ y

s=−∞
f(x, s) ds dx

Hence by applying the fundamental theorem of calculus:

fX(x) =

∫ ∞

y=−∞
f(x, y) dy

fY (y) =

∫ ∞

x=−∞
f(x, y) dx

Marginal pdf Example Question 4.3.1

Given continuous variables (X,Y ) ∈ R2:

f(x, y) =

1 |x|+ |y| <
1
√
2

0 otherwise

To determine the marginal pdf s for X and Y :

First notice that: |x|+ |y| <
1
√
2
⇔ |y| <

1
√
2
− |x|.

Hence given an x we can see that for the first case of the probability density function to match, y
must be between:

1

−
√
2
+ |x| < y <

√
2− |x|
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fX(x) =

∫ ∞

y=−∞
f(x, y) dy

=

∫ √
2−|x|

y=−
√
2+|x|

1 dy

= [y]
√
2−|x|

−
√
2+|x|

=
(√

2− |x|
)
−
(
−
√
2 + |x|

)
= 2

√
2− 2|x|

Similarly for y:
fY (y) = 2

√
2− 2|y|

Multinomial Distribution Definition 4.3.3

Given:

� sequence of n independent and identical experiments (all same distribution, same parameters).

� r possible outcomes for each experiment.

� Each probability qi is the probability of outcome i.

� The sum of all probabilities for the outcomes is 1:
∑r

i=1 qi = 1

We can have a set of random variables where each Xi represents the number of experiments resulting in
outcome i.

P (X1 = n1, X2 = n2, . . . , Xr = nr) =
n!

n1!× n2!× · · · × nr!
× qn1

1 × qn2
2 × · · · × qnr

r

We know this as any sequence will have the probability qn1
1 × qn2

2 × · · · × qnr
r where n1 + n2 + · · · + nr = n

(multiplying the probabilities in a sequence).

For a given number of outcomes, there are many different sequences like the above. We can deter-
mine the number of sequences as:(

n
n1

)(
n− n1

n2

)
. . .

(
n−

∑r−1
i=1 ni

nr

)
=

n!

n1!× n2!× · · · × nr!

Party Politics Example Question 4.3.2

Given 4 different political parties with popularities:

Party Polling Percentage
Ingsoc 40%
Techno Union 20%
Norsefire 15%
Birthday Party 25%

If asking 10 people of what party they prefer, what is the probability that:

� 2 support Ingsoc

� 4 support the Techno Union

� 1 supports Norsefire

� 3 support the Birthday Party

P (Xingsoc = 2, Xtechno−union = 4, Xnorsefire = 1, Xbirthday = 3)

10!

2!× 4!× 1!× 3!
× (0.4)2 × (0.2)4 × (0.15)1 × (0.25)3

189

25000
= 0.00756 = 0.756%
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4.4 Joint Conditional Random Variables

Given random variables X and Y :

variables independent ⇔ F (x, y) = FX(x)FY (y)

(For both continuous and discrete)

More specifically:

For Discrete Variables p(x, y) = pX(x)pY (y) (probability mass function)
For Continuous Variables f(x, y) = fX(x)fY (y) (Probability density function)

Diamond at origin Example Question 4.4.1

Consider pdf :

f(x, y) =

1 |x|+ |y| <
1
√
2

0 otherwise

By the previous example:

fX(x) = 2
√
2− 2|x|

fY (y) = 2
√
2− 2|y|

Hence as f(x, y) ̸= fX(x)fY (y) and hence X and Y are not independent.

Independent variables Example Question 4.4.2

Given two continuous random variables X and Y :

f(x, y) = λ1λ2e
−λ1x−λ2y given x, y > 0

We can get the marginal pdf by integrating over all of y:

f(x) =

∫ ∞

y=−∞
f(x, y)dy

=

∫ ∞

y=0

f(x, y)dy

= lim
t→∞

∫ t

y=0

λ1λ2e
−λ1x−λ2ydy

= lim
t→∞

∫ t

y=0

λ1λ2e
−λ1x × e−λ2ydy

= lim
t→∞

[
−λ1e

−λ1x−λ2y
]y=t

y=0

= lim
t→∞

(
−λ1e

−λ1x−λ2t
)
−
(
−λ1e

−λ1x−λ20
)

= lim
t→∞

(
−λ1e

−λ1x−λ2t
)
−
(
−λ1e

−λ1x−λ20
)

= 0−
(
−λ1e

−λ1x
)

= λ1e
−λ1x

We can do the same for fY (y) to get λ2e
−λ2y.

Hence the events are independent as:

λ1λ2e
−λ1x−λ2y = λ1e

−λ1x × λ2e
−λ2y
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4.4.1 Conditional PMF

For discrete random variables we can define the joint pmf as:

pX|Y (x|y) =
p(x, y)

pY (y)
where ∀y.pY (y) > 0

Baye’s Theorem Definition 4.4.1

Baye’s theorem states that on some partition of the sample space S, P1, . . . Pk:

P (X) =

k∑
i=1

P (X|Ei)P (Ei)

Given each partition the probability of some X occurring sums to the total probability of X occurring.

Using the conditional joint pmf we can also express this theorem (over a single partition) as:

pX|Y (x|y)× pY (y) = pY |X(y|x)× pX(x)

Conditional PMF Marginal Joint Probabilities Definition 4.4.2

p(x) =
∑
y

pX|Y (x|y)pY (y)

(Go through every y, summing the probability of x occurring with that y, multiplied by the probability of
that y)

4.4.2 Conditional PDF

For continuous random variables we can define the joint pdf as:

fX|Y (x|y) =
f(x, y)

fY (y)

X and Y independent ⇔ ∀x, y ∈ R. fX|Y (x, y) = fX(x)

And we can now have bayes theorem as:

fX|Y (x|y) =
fY |XfX(x)

fY (y)

Conditional PDF Marginal Joint Probabilities Definition 4.4.3

fX(x) =

∫ ∞

y=−∞
fX|Y (x|y)fY (y) dy

and with the cumulative distribution:

FX(x) =

∫ ∞

y=−∞
FX|Y (x|y)fY (y) dy
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Independent exponential random variables Example Question 4.4.3

Given X ∼ Exp(λ) and Y ∼ Exp(µ) what is P (X < Y ).

P (X < Y ) =

∫
x<y

f(x, y) dx dy

=

∫ ∞

y=−∞

∫ y

x=−∞
f(x, y) dx dy (go over all ys, for each take the xs that are less)

=

∫ ∞

y=−∞

∫ y

x=−∞
fX(x)fY (y) dx dy (X and Y are independent)

=

∫ ∞

y=−∞

∫ y

x=−∞
fX(x)fY (y) dx dy (X and Y are independent)

=

∫ ∞

y=−∞
FX(y)× (µe−µy) dx dy (Integrate fX to get FX and then get all below y)

=

∫ ∞

y=−∞
(1− e−λy)× (µe−µy) dx dy (Substitute definitions)

=

∫ ∞

y=0

(1− e−λy)× (µe−µy) dx dy (exponential cut at 0)

= lim
t→∞

∫ t

y=0

(1− e−λy)× (µe−µy) dx dy

= lim
t→∞

∫ t

y=0

(µe−µy)− e−λy × (µe−µy) dx dy

= lim
t→∞

∫ t

y=0

(µe−µy)− µe(−λ−µ)y dx dy

= lim
t→∞

[
−e−µy +

− µ

−λ− µ
e(−λ−µ)y

]y=t

y=0

= lim
t→∞

[
−e−µy +

µ

λ+ µ
e(−λ−µ)y

]y=t

y=0

= lim
t→∞

(
−e−µt +

µ

λ+ µ
e(−λ−µ)t

)
−

(
−eµ0 +

µ

λ+ µ
e(−λ−µ)0

)

= (0− 0)−

(
−1 +

µ

λ+ µ

)

= 1−
µ

λ+ µ
=

λ

λ+ µ
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4.5 Expectation and Variance for Joint Random Variables

Joint Expectation Definition 4.5.1

Where g is a bivariat function on the random variables X and Y :

For discrete variables:
E(g(X,Y )) =

∑
y

∑
x

g(x, y)p(x, y)

For continuous variables:

E(g(X,Y )) =

∫ ∞

y=−∞

∫ ∞

x=−∞
g(x, y)f(x, y) dx dy

Hence we have the following:

� For all g(X,Y ) = g1(X) + g2(Y ) ⇒ E(g1(X) + g2(Y )) = EX(g1(X)) + EY (g2(Y ))

� If X and Y are independent E(g1(X)× g2(Y )) = EX(g1(X)))× EY (g2(Y ))
Hence where g(X,Y ) = X × Y we have E(XY ) = EX(X)× EY (Y )

Q

Covariance Definition 4.5.2

Covariance measures how two random variables change with respect to one another.

For a single random variable we consider expected value of the difference between the mean and the
value, squared.

Expectation of g(X) = (X − µX)2 = σ2
X

For a bivariate we consider the expectation:

Expectation of g(X,Y ) = (X − µX)(Y − µY )

We can then defined the covariance as:

σXY = Cov(X,Y ) = E[(X − µX)(Y − µY )]

= E[XY ]− EX [X]× EY [Y ]

= E[XY ]− µXµY

When X and Y are independent so:

σXY = Cov(X,Y ) = E[XY ]− EX [X]× EY [Y ] = E[XY ]− E[XY ] = 0

Correlation Definition 4.5.3

Much like covariance, however is invariant to the scale of X and Y .

ρXY = Cor(X,Y ) =
σXY

σX × σY

If the variables are independent then ρXY = σXY = 0.
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4.6 Multivariate Normal Distribution

Multivariate Normal Distribution Definition 4.6.1

Given a random vector X = (X1, . . . , Xn) with means µ = (µ1, . . . , µn) has joint pdf :

fX =
1√

(2π)ndet
∑exp(−1/2(x− µ)T

−1∑
(x− µ))

Where
∑

is the covariance matrix:∑
(i,j)

= Cov(Xi, Xj) where 1 ≤ i, j ≤ n

The covariance matrix must be positive-definite for a pdf to exist Note that the random variables do not need
to be independent.

Positive Definite real Matrices Extra Fun! 4.6.1

M is positive-definite ⇔ ∀x ∈ R⋉\{0}. xTMx > 0

4.7 Conditional Expectation

Conditional Expectation Definition 4.7.1

In general E(XY ) ̸= EX(X)EY (Y )
For discrete random variables the conditional expectation of Y given that X = x is:

EY |X(Y |x) =
∑
y

ypy|X(y|x)

For continuous random variables:

EY |X(Y |x) =
∫ ∞

y=−∞
yfY |X(y|x) dy

In both cases the conditional expectation is a function of x and not Y . We are getting the weighted sum over
all Y s, for a single value (x) of X.

Expectation of a Conditional Expectation Definition 4.7.2

We can define random variable W such that:

W = EY |X(Y |X)

W is effectively a function of the random variable X : S → R by W (s) = EY |X(Y |x) where X(s) = x.

Using this we can determine that:
EY (Y ) = EX(EY |X(Y |X))

(Expectation of Y is the same as the expectation function of X, of the expected value of Y given X)

This holds for both discrete and continuous.∫
y

∫
x

yfY |X(y|x)fX(x) dx dy =

∫
y

∫
x

yf(x, y) dx dy =

∫
y

yfY (y) dy
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Tower Rule Definition 4.7.3

The expectation of a conditional expectation rule extends to chains of expectations:

E(Y ) = EX1(EY (Y |X1))

= EX2(EX1(EY (Y |X1, X2)|X2))

= . . .

= EXn(EXn−1(. . . EX1(EY (Y |X1, . . . , Xn)|X2, . . . , Xn) . . . |Xn))

This is a generalisation of the partition rule for conditional expectations.

4.8 Markov Chains

Discrete Time Markov Chain (DTMC) Definition 4.8.1

� A series of random variable modelling the state at a time step: X0, X1, X2, . . .

� The state space J (all states), where J = sipp(Xi) (contains all states that we can be in at any step)

� We can take a sequence (sample path) through the states (X0, X1, X2, . . . )

� We denote the state taken at step n as state Jn

We use an initial probability vector π to determine the start state:

π0 = [. . . probability of starting in state i . . . ]

We determine the probability of each next state through the transition probability matrix r:

rij = P (Xn+1 = j|Xn = i)

For a markov chain the probability of being in any next state is only dependent on the current state (mem-
oryless, history of previous states does not matter).

P (Xi+1 = Jn+1|Xi = Ji) = P (Xi+1 = Jn+1|Xi = Ji) = P (Xi+1 = Jn+1|X0 = J0, . . . , Xi = Ji)

To get the probability we can use power of the matrix:

P (Xn = j|X0 = i) = (Rn)ij

If we have the initial probability vector we can calculate:

P (Xn = j) =
∑
i∈J

P (X0 = i)× P (Xn = j|X0 = i)

=
∑
i∈j

π0i(R
n)ij

= (π0R
n)ij

We can obtain the long term probabilities by using the ∞th step:

lim
t→+∞

π0R
n = π∞

Note that since π∞R = π∞ we have eigenvector π∞ and eigenvalue 1.
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Probabilistic Finite State Machine Example Question 4.8.1
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Modelling Climate Example Question 4.8.2
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Chapter 5

Statistics and Estimation

5.1 Statistics Terms

Probability Definition 5.1.1

Deducing likelihood, and predicting events based on a known probability distribution.

Statistics Definition 5.1.2

Using empirical data/observations from an experiment to determine a probability distribution (and estimate
its parameters) that models the observed distribution of results.
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Sample Definition 5.1.3

A subset of the population, from which we can use statistical methods to make inferences about the charac-
teristics of an entire population.

� In vaccine trials, we can take a random sample as participants, and use there results to infer the possible
efficacy of the vaccine over an entire population.

� In manufacturing we may want to test durability, but doing so may destroy the product. Hence we
can take a small representative sample, and tests these to gain knowledge about the durability of all
products from a given production line, without having to test all to destruction.

� In politics, we can use the political persuasions of a sample to reason about an entire population (such
as electorate, or a given group) (polling).

Statistical Models Definition 5.1.4

Models are a structure (e.g distribution) often developed from a sample that can be used to make inferences
about a population.

� Models are usually parametric, meaning the models can be described entirely by its parameters.

� Models have a finite set of parameters.

� We can use distributions such as Normal, Poisson, Bernoulli etc. as parametric models.

� If the population is such that the probability of each outcome is PX|θ(.|θ) (probability of each is only
dependent on parameters) we can assume the random variables X are independent and identically
distributed.

� X1, X2, . . . , Xn ∼ Model(θ1, θ2, . . . , θk) given all are identically & independently distributed.
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5.2 Central Limit Theorem for Statistics

Central Limit Theorem Definition 5.2.1

Given some distribution random variable X belonging to some distribution. The mean value of a sample of
size n from X is:

Y ∼ N(µ,
σ2

n
)

Where µ is the expected/mean value of X and σ2 is its variance.

As the sample size increases, the variance in mean between different samples reduces.

At an infinite sample size, we can use the standard normal distribution:

lim
n→∞

Y − µ

σ
√
n

 ∼ N(0, 1)

Ages of a class Example Question 5.2.1

Given a class of 20 students, we can calculate the mean and variance:

x =
1

20

20∑
i=1

xi and σ2 =
1

20

20∑
i=1

(xi − x)2

There is some unknown distribution of students ages in a class.

If sampling is done with replacement (not students removed from the population after being ques-
tioned) we can use the central limit theorem to model the mean and variance of this distribution’s mean (the
mean age of the class) without needing to know the distribution itself.

x is distributed according to N(µ,
σ2

20
)

Meaning the mean age of any group of 20 students will be distributed normally with parameters:

� µ (The average age of all students/ avergae of all possible groups of 20)

� σ2 (The variance of means, how different two groups of 20 stuident’s means may be expected to be).

As we increase sample size, the variance decreases (larger groups of student ⇒ means closer together).

We will use this later in tests, e.g to see if a given mean that occurs is so unlikely it is likely our
distribution is wrong, or our sampling biased in some way.
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5.3 Estimators

Statistic Definition 5.3.1

A statistic is a function operating on the random variables of a sample:

T = T (X1, X2, . . . , Xn) = T (X)

As it is a function of random variables, it is itself a random variable. Hence if distribution X’s parameters
are known, we can use it:

� if T is the sum of ages of a class of 10, and we know the mean age, variance we can calculate porbabilities
for T .

� T may be many useful statistics, e.g the lower quartile of a cohort of 100’s GCSE results, or the range
of distances flown by birds in a flock.

When given some sample x = (x1, x2, . . . , xn) we have:

t = t(x) = t(x1, x2, . . . , xn)

Estimator Definition 5.3.2

A statistic used to approximate the parameter of the distribution of its arguments.

� Given a sample x the value of the estimator t = t(x) is called an estimate.

� If we can approximately identify the sampling distribution of the statistic (PT |θ) we can find the expec-
tation, variance (and more) related to our statistic.

If the sample size n is large, central limit theorem can be used to approximate the distribution PT |θ

T = X =

∑n
i=1 Xi

n

And hence we know approximately that:

X ∼ N(µX ,
σ2
X

n
)

For a given unknown distribution we could use several estimators to approximate its parameter.

Using the first/any Xi as the estimator

T [X1, X2, . . . , Xn] = X1 ∼ PX|θ

Likewise if we use the median with T :

Tmedian[X1, X2, . . . , Xn] = X∣∣∣∣∣∣∣
n+ 1

2

∣∣∣∣∣∣∣
∼ PX|θ

However this does not work as we do not know the parameters of the distribution X.

Using the mean as an estimator

TX [X1, X2, . . . , Xn] =

∑n
i=1 Xi

n
∼ N(µ,

σ2

n
)

This is a good estimator for the mean of many distributions, while we do not know µ or σ, we do know the type of
distribution.
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Estimator Bias Definition 5.3.3

We define the bias of an estimator T as estimating the parameter θ is:

bias(T ) = E[T |θ]− θ

If bias is 0 we call it an unbiased estimator.

For the mean:

E(X) = E

( ∑n
i=1 Xi

n

)
=

∑n
i=1 E[Xi]

n
=

n× µ

n
= µ

For any distribution the sample mean x is an unbiased estimate for the population mean µ.

For the variance: If we know the population mean µ we can also use the unbiased estimator:

S2
µ =

1

n

n∑
i=1

(Xi − µ)2

The sample variance is a biased estimator and is defined as:

S2 =
1

n

n∑
i=1

(Xi −X)2

We have too few degrees of freedom, that is based on the mean and x1→n−1 we can determine xn, hence we
apply bessel’s correction (wikipedia article on source of bias here) to account for what is effectively a missing
variance.

After applying bessel’s correction, we get the unbiased estimator of bias-corrected sample variance:

S2
n−1 =

1

n− 1

n∑
i=1

(Xi −X)2

5.3.1 Bessel’s Correction Proof

First we attempt to prove that S2
µ is an unbiased estimator for variance.

1. We first define S2
µ.

S2
µ =

1

n

n∑
i=1

(Xi − µ)2

2. We get the expected value of the estimator, to be an unbiased estimator of variance, this should be equal to the
variance.

E[S2
µ] = E

[
1

n

n∑
i=1

(Xi − µ)
2

]

=
1

n

n∑
i=1

E
[
X2

i − 2Xiµ+ µ2
]

=
1

n

n∑
i=1

(
E[X2

i ]− 2E[Xi]µ+ µ2
)
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3. We can substitute µ for E[Xi]:

E[S2
µ] =

1

n

n∑
i=1

(
E[X2

i ]− 2E[Xi]E[Xi] + (E[xi])
2
)

=
1

n

n∑
i=1

(
E[X2

i ]− (E[xi])
2
)

=
1

n

n∑
i=1

V ar[Xi]

4. As all Xi are identically distributed, V ar[Xi] = V ar[X] = σ2.

E[S2
µ] =

1

n

n∑
i=1

σ2

=
n× σ2

n

= σ2

Hence we can see that S2
µ is an unbiased estimator of σ2.

Next we prove the correction:
1. We get the expected of:

E

[
n∑

i=1

(Xi − x)2

]
2. We can add and subtract µ (keeping the same value)

E

[
n∑

i=1

(Xi − x)2

]
= E

[
n∑

i=1

((Xi − µ)− (x− µ))2

]

3. Now we can split the expected up (all distributions are independent (the normal for x and we assume independence
for Xi)).

E

[
n∑

i=1

(Xi − x)2

]
= E

[(
n∑

i=1

(Xi − µ)2

)
− 2(x− µ)

(
n∑

i=1

(Xi − µ)

)
+

(
n∑

i=1

(x− µ)2

)]
4. We can substitute using

∑n
i=1(Xi − µ) = n× (x− µ).

E

[
n∑

i=1

(Xi − x)2

]
= E

[(
n∑

i=1

(Xi − µ)2

)
− 2(x− µ)× n× (x− µ) +

(
n∑

i=1

(x− µ)2

)]

= E

[(
n∑

i=1

(Xi − µ)2

)
− 2n(x− µ)2 +

(
n∑

i=1

(x− µ)2

)]

= E

[(
n∑

i=1

(Xi − µ)2

)
− 2n(x− µ)2 + n(x− µ)2

]

= E

[(
n∑

i=1

(Xi − µ)2

)
− n(x− µ)2

]

5. We can split the expected (independent distributions) substitute in the variance X.

E

[
n∑

i=1

(Xi − x)2

]
= E

[(
n∑

i=1

(Xi − µ)2

)
− n(x− µ)2

]

= E

[
n∑

i=1

(Xi − µ)2

]
− n× E

[
(x− µ)

2
]

=

n∑
i=1

E
[
(Xi − µ)2

]
− n× E

[
(x− µ)

2
]
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5. As x is distributed by a normal distribution N(µ,
σ2

n
), the expected of it shifted by µ and squared is the variance.

E

[
n∑

i=1

(Xi − x)2

]
=

n∑
i=1

E
[
(Xi − µ)2

]
− n×

σ2

n

=

n∑
i=1

E
[
(Xi − µ)2

]
− σ2

6. We can then use the variance of the distribution of X:

E

[
n∑

i=1

(Xi − x)2

]
=

n∑
i=1

E
[
(Xi − µ)2

]
− σ2

= nσ2 − σ2

= (n− 1)σ2

7. Hence to get an unbiased estimator, we need to divide this by (n− 1) (apply correction).

E

[
n∑

i=1

(Xi − x)2

]
= (n− 1)σ2

1

n− 1
E

[
n∑

i=1

(Xi − x)2

]
= σ2

E

[
1

n− 1

n∑
i=1

(Xi − x)2

]
= σ2

Hence
1

n− 1

∑n
i=1(Xi − x)2 is an unbiased estimator of σ2.

5.4 Efficient Consistent Estimator

We can quantify how good estimators are. For example with the Estimator Bias (difference between the expected
using the estimator and the parameter bias(T ) = E[T |θ]−θ). We also wanto to quantify the Efficiency of Estimators.

Estimator Efficiency Definition 5.4.1

Given two unbiased estimators Θ̂(X) and Θ̃(X) where X = (X1, . . . , Xn) (a sample containing n observations
X . . . ).

We can compare the mean, variances etc to determine which estimator is more efficient (typically
lower variance)

Θ̂ is more efficient than Θ̃ if:

∀θV arΘ̂(Θ̂|θ) ≤ V arΘ̃|θ(Θ̃|θ) or ∃θV arΘ̂(Θ̂|θ) < V arΘ̃|θ(Θ̃|θ)

More efficient means less variance in estimates.

IF an estimator is more efficient than any other possible estimator, it is called efficient.

Bias and Efficiency Example Question 5.4.1

Given a population with mean µ and variance σ2. We have a sample:

X = (X1, . . . , Xn)

We consider two estimators:

1. M̂ = X (the sample mean)

2. M̃ = X1 (the first observation in the sample)
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We can compute the bias as for both:

1. The expected value of the sample mean is the population mean µ, hence M̂ is unbiased.

2. The expected value of any observation is µ, so the first observation in the sample is also ubiased.

Next we can consider the variance.

For a single sample we know the variance will be σ2, hence:

V arM̃ (M̃ |µ and σ2) = V ar(X1) = σ2

However for the sample mean, we know can use the Central Limit Theorem to determine that the variance
of the mean of a sample will be divided by the sample size.

V arM̂ (M̂ |µ and σ2) = V ar(X) =
σ2

n

Hence for all values of n, the variance of M̂ ≤ M̃ (at n = 1 they are equal), so M̂ is the more efficient
estimator.

Estimator Consistency Definition 5.4.2

A consistent estimator improves as the sample size grows. Formally:

∀ϵ > 0 P (|Θ̂− θ|) → 0 as n → ∞

If Θ̂ is unbiased, then:
lim

n→∞
V ar(Θ̂) = 0 ⇒ Θ̂ is consistent

Note: X (sample mean) is a consistent estimator for any population.

5.5 Confidence Intervals

In order to quantify our degree of uncertainty in an estimate θ̂, when the true value θ is unknown, we use use our
estimate as the true value, to compute the distribution PT |θ̂ (the approximate sampling distribution).

5.5.1 Known Variance

Confidence Interval

If we know the true variance of the population, then the sample mean would be distributed as:

X ∼ N

(
x,

σ2

n

)
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If µ (population mean) = x, then we can say that (using the standard normal distribution) there is a 95% probability
the observed statistic X is in the range: [

x− 1.96
σ

n
, x+ 1.96

σ

n

]
(Double ended, 95% confidence interval for µ)

With the Standard Normal Distribution

We can define any normal distribution in terms of the standard normal distribution.

X ∼ N(µ, σ2) ⇔ Y =
X − µ

σ
⇔ Y ∼ N(0, 1)

We can then use tables for the standard normal distribution, using Φ(z) = P (X ≤ z) given Z ∈ N(0, 1):

Note if you have sample size as part of the variance, Y =
X − µ(

σ
√
n

).
For example in the previous confidence interval, we used the normal distribution to calculate the values.

Given the critical value z for the normal distribution e.g 1.96 for double-ended 95% confidence interval, we have:
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Standard Normal X ∼ N(0, 1) [−z, z]
Normal Distribution X ∼ N(µ, σ2) µ− zσ, µ+ zσ

Sample Mean X ∼ N

(
µ,

σ2

n

) [
µ− z

σ
√
n
, µ+ z

σ
√
n

]

Population mean µ ∼ N

(
X,

σ2

n

) [
x− z

σ
√
n
, x+ z

σ
√
n

]

Employees Opinions on the Board Example Question 5.5.1

A corporation surveys employees on wether they think the board is doing a good job.

1000 employees are randomly selected, and 732 say the board is doing a good job. Find the 99%
confidence interval for the proportion of the employees that think the board is doing a good job. Assume the
variance is σ2 = 0.25.

First we get the sample mean:

x =
732

1000
= 0.732

Next we determine the standard deviation:

σ =
√
0.25 = 0.5

We want to get the double-ended 99% interval, so each tail will have size 0.005. By using the standard
normal distribution we have Φ(2.576) = 0.995, so z = 2.576.

Hence we can calculate the interval as:

µ =

[
x− z

σ
√
n
, x+ z

σ
√
n

]

=

[
0.732− 2.576

0.5
√
1000

, 0.732 + 2.576
0.5

√
1000

]

=

[
0.732− 2.576

0.5
√
1000

, 0.732 + 2.576
0.5

√
1000

]
≈ 0.732± 0.0407

5.5.2 Unknown Variance

In a problem where we are trying to fit a normal distribution, but both the mean and variance are unknown.

Bias Corrected Variance Sn−1 =

√∑n
i=1(Xi −X)2

n− 1

We use the bias corrected variance of our sample, and as a result must use a different distribution to the normal
distribution.

Normal Distribution (σ known) Studen’t t distribution (σ unknown)

X − µ(
σ
√
n

) ∼ N(0, 1)
X − µ(
sn−1√

n

) ∼ tn−1

In the student’s distribution we set degrees of freedom ν = n− 1.

For a double ended confidence (100−α)%, we compute tν=n−1, 1−α/2 to find the critical values (the places where the
tails start/ the α-quantile of tν).
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[
x− tν=n−1, 1−α/2 ×

sn−1√
n
, x+ tν=n−1, 1−α/2 ×

sn−1√
n

]
When using the tables for t values, we use the size we want (e.g 0.975 for 95% double-ended confidence interval),
and then use the degrees of freedom (n− 1).

50



Chapter 6

Hypothesis Testing

Hypothesis Test Definition 6.0.1

Given two samples, determine if the difference is significant enough to suggest the parameters are different.

� Null Hypothesis No statistical relation, there is no evidence for a claim. (H0)

� Alternative Hypothesis There is a statistical relation. (H1)

We can partition the parameter space Θ into two disjoint sets Θ0 and Θ1 for the null and alternative hy-
potheses, which can be expressed as:

H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1

(We are testing if based on a given sample, based onm the estimated parameter, if it is plausible the sample
distribution is from another distribution)

� Simple Hypothesis Test that θ = θ0

� Composite Hypothesis Test that θ > θ0 or θ < θ0

Typically a test is of the form:
H0 : θ = θ0 versus H1 : θ ̸= θ0

Some tests are one-sided, for example:

H0 : θ > θ0 versus H1 : θ < θ0

To test the validity of H0:

1. Choose a test statistic T (X) to use on the data.

2. Find a distribution PT under H0 from the test statistic.

3. Determine the rejection region (the region in which a result would invalidate H0).

4. Calculate the observed test statistics t(x).

5. If t(x) is in the rejection region, reject H0 and accept H1, else retain H0.
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The significance level/Type 1 Error Rate α ∈ (0, 1) of as hypothesis test determines the size of the rejection regions.

� α → 0 Less and less likely to reject H0, rejection region samller, confidence in our result is lower - easier test.

� α → 1 More and more likely to reject H0, rejection region larger, confidence higher - stricter test.

The p-value of a test is the significance level threshold between rejection/acceptance of H0 for a given test.

Test Errors Definition 6.0.2

� Type 1 Reject H0 when it is actually true. α = P (T ∈ R|H0)
(significance is the probability of incorrectly rejecting the null hypothesis)

� Type 2 Accepting H0 when H1 is true. β = P (T ̸∈ R|H1)
Probability a test statistic is not in the rejecting region, when H1 is true.

Test Power Definition 6.0.3

The probability of correctly rejecting the null hypothesis

Power = 1− β = 1− P (T ̸∈ R|H1) = P (T ∈ R|H1)

For a given significance level:
α = P (T ∈ R|H0)

A good test statistic T and rejection region R will have a high power, the highest power test under H1 is
called the most powerful.

Given a control group (placebo) and a test group (given some pharmaceutical), we can test the hypotheis that
the drug has an effect on survival rates.

H0 : The drug has no effect - survival rates are the same.

H1 : The drug has an effect - survival rates are different.

6.1 Testing For Population Mean

Sample mean belongs to a normal distribution (Central Limit Theorem):

X ∼ N

(
µ,

σ2

n

)
We have our two hypotheses:

H0 : µ = µ0 versus H1 : µ ̸= µ0
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We can derive a new distribution in terms of the standard normal:

Z =
X − µ0

σ/
√
n

∼ N(0, 1)

Hence for significance α (or confidence interval 1− α) we can get the rejection/acceptance regions.

Φ(1− α) = threshold results in acceptance region: [−threshold, threshold]

Hence we can calculate z for a given sample, and then determine if it is in the region, if it is then accept H0, else
rejected H0 and accept H1.

Weight of Crisp Packets (Known Variance) Example Question 6.1.1

A crisp manufacturer sells packets listed as having weight 454g. From a sample size of 50, we get the mean
weight of a bag as 451.22g.

Assume the variance of bag weights is 70. Is the observed sample consistent with the claim made by
the company at the 5% significance.

H0 : µ = 454g

H1 : µ ̸= 454g

We have the following information:

x = 451.22g σ2 = 70 n = 50 α = 0.05

Hence we can state the hypothesized distribution of the sample mean:

X ∼ N

(
454g,

70

50

)

We can get this in terms of the standard normal distribution:

Z =
X − 454

√
35/5

∼ N(0, 1)

At the 5% significance, we have 2.5% are each tail. Hence we get our critical value as z(critical) = 0.975,
where 1.96.

Hence the rejection region is:

X − 454
√
35/5

< −1.96

X − 454
√
35/5

> 1.96

Hence in order to accept H0, X must be in the interval:

451.6809 < X < 456.3191

As x = 451.22 it is in the rejection region, hence at the 95% significance there is sufficient evidence to reject
the company’s claim.

Weight of Crisp Packets (UnKnown Variance) Example Question 6.1.2

A Crisp manufacturer sells packets listed as having weight 454g. From a sample size of 50, we get the mean
weight of a bag as 451.22g.

Assume the variance of bag weights is 70. Is the observed sample consistent with the claim made by
the company at the 5% significance?
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H0 : µ = 454g

H1 : µ ̸= 454g

We have the following information:

x = 451.22g n = 50 α = 0.05

We first calculate the bias corrected sample variance:

sn−1 =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2

=
√
70.502 (Need to calculate from each observation in the sample)

Hence we can now use the student’s t distribution with degrees of freedom n− 1 = 49.

x− µ0

sn−1/
√
n
∼ t49

For α = 5% we take the tails as 0.025, so use t49, 0.975 ≈ 2.01. Hence will reject the regions:

X − 454
√
70.502/5

√
2
< −2.01

X − 454
√
70.502/5

√
2
> 2.01

Hence to accept H0, X must be:
451.6123 < x < 456.3868

Hence at the 5% significance there is sufficient evidence to reject H0 and accept H1.

Optimising Code Example Question 6.1.3

The previous code had a mean run time of 6s. Following an optimisation a sample of runs is taken, with
sample of size 16, mean 5.8s and bias corrected sample standard deviation of 1.2s. Is the new code faster?

Our test is as follows:

H0 : µ ≥ 6s (mean time is same or larger) versus H1 : µ < 6s (mean time is lower)

We have the following information:

x = 5.8 sn−1 = 1.2s n = 16

Hence we have the distribution:
X − µ
sn−1/

√
n
∼ t15

Hence we can use the significance (one ended/top tail) of 5% to find t15,0.95 ≈ 1.75.

Hence will reject the regions:

X − 6
1.2/4

< −1.75

X − 6
1.2/4

> 1.75

Hence to accept H0, X must be:
5.475 < X < 6.525
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Hence as x = 5.8 this is within the acceptable region, so at the 95% significance we have insufficient evidence
to reject H0.

6.2 Samples from Two Populations

When given two random samples:

X = (X1, . . . , Xn) from PX and Y = (Y1, . . . , Yn) from PY

We may want to determine the similarity of the distributions of PX and PY .

Typically this involves testing to see if the means of the populations are equal:

H0 : µX = µY versus H1 : µX ̸= µY

Paired Data Definition 6.2.1

A special case when X and Y are pairs (X1, Y1), . . . , (Xn, Yn) (each Xi and Yi are possibly dependent on
each-other).

For example, where for a person i, Xi is the heart rate before exercise, and Yi the rate afterwards.

We can consider a sample of the differences, if this has mean 0:

Zi = Xi − Yi testing H0 : µZ = 0 versus H1 : µZ ̸= 0

6.2.1 Known Variance, X and Y are Independent

Given that:

X = (X1, . . . , Xn1
) Xi ∼ N(µX , σ2

X) X ∼ N

(
µX ,

σ2
X

n1

)

Y = (Y1, . . . , Yn2
) Yi ∼ N(µY , σ

2
Y ) Y ∼ N

(
µY ,

σ2
Y

n2

)
We can therefore get the distribution of the difference in sample means:

X − Y ∼ N

(
µX − µY ,

σ2
X

n1
+

σ2
Y

n2

)

And hence:
(X − Y )− (µx − µY )√

σ2
X

n1
+

σ2
Y

n2

∼ N(0, 1)

As we assume for H0 that µx = µY we have:

X − Y√
σ2
X

n1
+

σ2
Y

n2

∼ N(0, 1)

So we can calculate the test statistic:

z =
x− y√
σ2
X

n1
+

σ2
Y

n2

And use this to determine if H0 is rejected.
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6.2.2 Unknown Variance, X and Y are Independent, Variances Equal

Bias-Corrected Pooled Sample Variance Definition 6.2.2

If the variance of two samples is the same, given:

X = (X1, . . . , Xn1) and Y = (Y1, . . . , Yn2)

We can get an unbiased estimator of the variance as:

S2
N1+n2−2

(n1 − 1)S2
n1−1, X + (n2 − 1)S2

n2−1, Y

(n1 − 1) + (n2 − 1)

Which is equivalent to:

S2
n1+n2−2 =

∑n1

i=1(Xi −X)2 +
∑n2

i=1(Yi − Y )2

n1 + n2 − 2

If σ2
X and σ2

Y are unknown, but it is know that σ2 = σ2
X = σ2

Y we can use an estimator to get an estimate of the
variance σ2 using the samples from the two populations.

(X − Y )− (µx − µY )

σ
√

1/n1 + 1/n2

∼ N(0, 1)

Hence if the H0 : µX = µY then:
X − Y

σ
√

1/n1 + 1/n2

∼ N(0, 1)

To get an estimate for the variance we can use the Bias-Corrected Pooled Sample Variance

Compiler Comparison Example Question 6.2.1

Given two compilers, attempt to determine if compiler 2 produces is faster code (to 5% significance).

Compiler 1 Compiler 2
n1 = 15 n2 = 15
x = 114s y = 94s
s214 = 310 s214 = 290

µ1 µ2

H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2

We assume that the variances of the population variances are the same for both compilers.

We can get the Bias-Corrected Pooled Sample Variance:

S28 =
14× 310 + 14× 290

14 + 14
= 300

Hence our test statistic is:
x− y

σ
√

1/n1 + 1/n2

=
20

√
300

√
2

15

=
√
10 ≈ 3.162

We can now use the student’s t distribution to get the rejection region (one-sided):

t28,0.95 = 1.701

Hence as 3.162 > 1.701 we have sufficient evidence at the 5% significance to reject H0 and accept H1. The
second compiler produces faster code.
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Welch’s t-test Extra Fun! 6.2.1

If the variances are unknwon, and not equal, we can use Welch’s t test.

The test statistic is:
(x− y)− (µX − µY )√

S2
n1,X

n1
+

S2
n1,Y

n1

We then use a t distribution tν with the ν degrees of freedom determined by rounding the following to the
nearest whole number:

ν =

((
S2
n1, X

n1

)
+

(
S2
n1, X

n1

))2

(
1

n1 − 1

)(
S2
n1, X

n1

)2

+

(
1

n2 − 1

)(
S2
n2, Y

n2

)2

The we proceed as normal, checking the test statistic is within the rejection regions.

6.3 Chi Squared Testing

6.3.1 Goodness of Fit

Binning Definition 6.3.1

Given a distribution, we can partition it into several disjoint bins. Essentially we are creating a pesudo-PMF
(potentially with ranges instead of just discrete values) describing how many datapoints/the frequency we
would expect to find from a distribution.

As a result, we can directly compare the expected values Ei (from a distribution we are checking a
sample against), with the observations Oi from a sample.

Goodness of Fit/Chi-Square Statistic Definition 6.3.2

Denotes the difference between some expected values, and some observed.

For n bins we have:

X2 =

n∑
i=1

(Oi − Ei)
2

Ei
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6.3.2 Chi-Squared Test for Model Checking

Used to determine if an observed sample matches a given distribution to some significance.

1. Determine expected distribution (can use parameters estimated from the sample).

2. Create a hypotheses based some parameters θ:

H0 : θ = θ0 versus H1 : θ ̸= θ0

3. Bin the expected distribution (for comparison with the observed).

4. Calculate the Goodness of Fit/Chi-Square Test Statistic X2.

5. Calculate the degrees of freedom as:

ν = (number of possible values X can take)− (number of parameters being estimated)− 1

6. Determine the critical value using the Chi Squared Distribution χ2
ν and the significance α (typically using a

table).

7. If X2 > χ2
ν, 1−α (test statistic larger than critical value)

Note that:

� All expected values must be larger than 5 for a good test. Hence some bins may have to be merged.

� The number of values X can take is typically the number of bins.

Adverse Drug Effects Example Question 6.3.1

A study in the journal of the American Medical Association gives the causes of a sample of 95 adverse drug
effects as:

Reason No. Adverse Effects
Lack of Knowledge 29
Rule Violation 17
Faulty Dose Check 13
Slips 9
Other Cause 27

Test if the true percentages of causes of adverse effects are different at the 5% significance.

As we are checking the percentages are the same, we effectively have a discrete uniform distribution:

X ∼ U(1, 5)

Hence we can calculate our null and alternative hypotheses:

H0 : X ∼ U(1, 5) versus H1 : X ̸∼ U(1, 5)

Now we can bin the distribution, (no merging is required as all expected values are larger than 5):

58



It is now possible to compute goodness of fit.

X2 =
n∑

i=1

(Oi − Ei)
2

Ei

=
(29− 19)2

19
+

(17− 19)2

19
+

(13− 19)2

19
+

(9− 19)2

19
+

(27− 19)2

19
= 16

We have ν = 4 as there are 5 possible values, and no parameters were estimated from the data.

Hence we get the critical value from the chi-squared table: χ2
4, 0.95 = 9.49

As 16 > 9.49 there is sufficient evidence at the 5% significance level to reject H0, the percentages
differ.

Football Games Example Question 6.3.2

Given the total number of goals for 2608 football matches, determine if the number of goals scored in a match
can be modelled by X ∼ Poisson(3.870) at the 5% significance.

Goals Scored (x) 0 1 2 3 4 5 6 7 8 9 ≥ 10
Matches (nx) 57 203 383 525 532 408 273 139 139 45 27 16

Hence as we already have a distribution, we can create our hypotheses:

H0 : X ∼ Poisson(3.870) versus H1 : X ̸∼ Poisson(3.87)

We can then use the poisson distribution to calculate the expected for 2608 football matches, for the final
(≥ 10) we use the cumulative to get the remaining probability.

Goals 0 1 2 3 4 5 6 7 8 9 ≥ 10
O 57 203 383 525 532 408 273 139 45 27 16
E 54.4 210.5 407.4 525.5 508.4 393.5 253.8 140.3 67.9 29.2 17.1
(O − E)2

E
0.124 0.267 1.461 0.000 1.096 0.534 1.452 0.012 7.723 0.166 0.071

Hence we get our test statistic as: X2 = 12.906.

As we did not estimate any parameters from the sample, the degrees of freedom are ν = 11− 1 = 10.
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The critical value is: χ2
10, 0.95 = 16.91.

Hence as 12.906 < 16.91 we there is insufficient evidence as the 5% significance to reject H0, the
goals can be modelled as Poisson(3.87).

6.3.3 Chi-Squared Test for Independence

Contingency Table Definition 6.3.3

A table denoting the frequency of each combination of values for X and Y .

Possible values of y Marginal
y1 y2 . . . yl

Possible x

x1 n1,1 n1,2 . . . n1,l n1,•
x2 n2,1 n2,2 . . . n2,l n2,•
...

...
...

. . .
...

...
xk nk,1 nk,2 . . . nk,l nk,•

Marginal n•,1 n•,2 . . . n•,l n

We can use the marginal values to determine the expected value, if the two distributions were independent.

Given a dataset of points (x, y)1, (x, y)2, . . . , (x, y)n, we can consider it the joint distribution PXY of the distri-
butions PX and PY .

To test if the distributions PX and PY are independent from the sample (without knowing the actual distribu-
tions themselves) we can use a contingency table.

For the contingency table entry coordinates 0 < i ≤ l, 0 < j ≤ k:

Oi,j = ni,j and Ei,j =
ni,• × n•,j

n

Hence we can now compute the X2 (Chi Squared test statistic) using these observed and expected values.

We compute the degrees of freedom as ν = (rows− 1)× (columns− 1) (each row and column alone has degrees of
freedom n− 1 as they must sum to the row/column total), and can then do the Chi-Squared Test normally.

Fitness and Stress Example Question 6.3.3

Poor Fitness Average Fitness Good Fitness
Stress 206 184 85 475
No Stress 36 28 10 74

242 212 95 549

Determine at the 5% significance if there is a link between fitness and stress.

For this test the null hypothesis will be that fitness and stress are independent.

H0 : Stress and fitness are independent versus H1 : Stress and Fitness re not independent

Next we can calculate the expected values:

Poor Fitness Average Fitness Good Fitness
O E O E O E

Stress 206 209.4 184 183.4 85 82.2 475
No Stress 36 32.6 28 28.6 10 12.8 74

242 212 95 549

We can then calculate our test statistic to be X2 = 1.133.

To compute the degrees of freedom ν = (2− 1)× (3− 1) = 2.
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Hence we can get our critical value χ2
2, 0.95 = 5.99.

As 5.99 > 1.133, there is insufficient evidence to reject H0 at the 5% significance level. Stress and
fitness are not linked.
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Chapter 7

Maximum Likelihood Estimate

Given some distribution with an unknown parameter θ:

X ∼ Distribution(. . . θ . . . )

And a sample taken from the distribution X:

X = (X1, X2, . . . , Xn)

We want to know the value of θ for which the likelihood of the sample occurring is highest.

Likelihood Function Definition 7.0.1

The likelihood of some observations x1, x2, . . . , Xn occurring given some θ are:

L(θ) = P (x1, x2, . . . , xn|θ)

=

n∏
i=1

f(xi|θ)

This is as f is the probability mass function, and as each observation is independent we can multiply their
probabilities.

Log Likelihood Function Definition 7.0.2

Used more often than likelihood (easier to work with, and converts decimal small values to large negative
values - avoids floating point errors)

l(θ) = lnL(θ)

To do this, we construct the likelihood (or log likelihood) function from the distribution and sample in term of θ.

Then we can differentiate the function to determine the value of θ for the maximum.

This value of θ is the Maximum Likelihood Estimate (θ̂).

7.1 Common Maximum Likelihood Estimates

Given a sample x = (x1, x2, . . . , xn), we can use formulas for the maximum likelihood.

7.1.1 Exponential Distribution

X ∼ Exp(θ) ⇒ f(x) = θe−θx
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First we determine the likelihood in terms of θ.

L(θ) =

n∏
i=1

f(xi)

=

n∏
i=1

θe−θxi

= θn
n∏

i=1

e−θxi

= θne−θ
∑n

i=1 xi

Next we can derive the log likelihood

l(θ) = lnL(θ)

= ln
(
θne−θ

∑n
i=1 xi

)
= n ln θ − θ

n∑
i=1

xi

Next we can differentiate and set equal to zero:

dl(θ)

dθ
= n

1

θ
−

n∑
i=1

xi = 0

0 =
n

θ
−

n∑
i=1

xi

n∑
i=1

xi =
n

θ

θ =
n∑n

i=1 xi

Hence the maximum likelihood estimator is the reciprocal of the mean of the sample.

θ̂ = 1/x

7.1.2 Geometric Distribution

X ∼ Geo(θ) ⇒ f(x) = θ(1− θ)x−1

L(θ) =

n∏
i=1

f(xi)

n∏
i=1

θ(1− θ)xi−1

θn
n∏

i=1

(1− θ)xi−1

θn(1− θ)
∑n

i=1(xi−1)

θn(1− θ)(
∑n

i=1 xi)−n

Now we find the log likelihood.

l(θ) = lnL(θ)

= ln
(
θn(1− θ)(

∑n
i=1 xi)−n

)
= n ln θ +

((
n∑

i=1

xi

)
− n

)
ln (1− θ)

63



Now we differentiate, and set equal to zero to find θ̂.

dl(θ)

dθ
=

n

θ
+

((
n∑

i=1

xi

)
− n

)
1

θ − 1
= 0

0 =
n(θ − 1)

θ(θ − 1)
+

((
n∑

i=1

xi

)
− n

)
θ

θ(θ − 1)

0 = n(θ − 1) +

((
n∑

i=1

xi

)
− n

)
θ

0 = nθ − n+

((
n∑

i=1

xi

)
− n

)
θ

n =

(
n∑

i=1

xi

)
θ

n∑n
i=1 xi

= θ

Hence the maximum likelihood estimator is the reciprocal of the mean of the sample.

θ̂ = 1/x

7.1.3 Binomial Distribution

X ∼ Binomial(m, θ) ⇒ f(x) =

(
m
x

)
θx(1− θ)m−x

L(θ) =

n∏
i=1

f(xi)

=

n∏
i=1

(
m
xi

)
θxi(1− θ)m−xi

=

n∏
i=1

(
m
xi

)
×

n∏
i=1

θxi ×
n∏

i=1

(1− θ)m−xi

=

n∏
i=1

(
m
xi

)
× θ

∑n
i=1 xi × (1− θ)

∑n
i=1 m−xi

=

n∏
i=1

(
m
xi

)
× θ

∑n
i=1 xi × (1− θ)mn−

∑n
i=1 xi

Now we find the log likelihood.

l(θ) = lnL(θ)

= ln

(
n∏

i=1

(
m
xi

)
× θ

∑n
i=1 xi × (1− θ)mn−

∑n
i=1 xi

)

= ln

n∏
i=1

(
m
xi

)
+ ln θ

∑n
i=1 xi + ln(1− θ)mn−

∑n
i=1 xi

= ln

n∏
i=1

(
m
xi

)
+

n∑
i=1

xi ln θ +

(
mn−

n∑
i=1

xi

)
ln(1− θ)
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Now we differentiate, and set equal to zero to find θ̂.

dl(θ)

dθ
= 0 +

n∑
i=1

xi

1

θ
+

(
mn−

n∑
i=1

xi

)
1

θ − 1
= 0

0 =

n∑
i=1

xi

θ − 1

θ(θ − 1)
+

(
mn−

n∑
i=1

xi

)
θ

θ(θ − 1)

0 =

n∑
i=1

xi(θ − 1) +

(
mn−

n∑
i=1

xi

)
θ

0 = θ

n∑
i=1

xi −
n∑

i=1

xi +mnθ − θ

n∑
i=1

xi

0 = −
n∑

i=1

xi +mnθ∑n
i=1 xi

mn
= θ

Hence the maximum likelihood estimator is the sample mean divided by the number of trials (for binomial):

θ̂ =
x

m
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Chapter 8

Posterior

8.1 MLE Sensitivity

There are several shortcomings of MLE :

� Sensitive to Sample Size
In a small sample, small fluctuations can change the MLE considerably.

� Does not use any Prior Information
Only uses the given sample.

� Returns a single value
Only returns the single and specific value θ̂, not a distribution P (θ|x) for some sample x.

Hence we cannot know how close other θ are, how strong our estimate is.

� Cannot Assess
Can only assess using confidence intervals, however these are also dependent on the sample.

8.2 Bayes & Posterior

Baye’s Theorem Definition 8.2.1

Given two events A and B, where P (B) ̸= 0:

P (A|B) =
P (B|A)× P (A)

P (B)

Note that we can use the law of total probability to re-express this without knowing P (B):

P (A|B) =
P (B|A)× P (A)

P (B|A)× P (A) + P (B|A)(1− P (A))
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By law of total probability:

Given j ∈ [1,m].

n∑
i=1

P (xi|θj) = 1 and given i ∈ [1, n]
∑

j = 1mP (θj |xi) = 1

When calculating the MLE using a sample x we calculated:

θ̂MLE = argmax
θ

L(θ|x) = argmax
θ

[
n∏

i=1

P (xi|θ)

]
(The θ most likely to give the sample x)

We can apply this to the distributions X and θ to get a joint distribution:

P (θ|X) =
P (X|θ)× P (θ)

P (X)

Where the evidence (X), acts as a normalizer (does not alter the shape of the distribution, just stretches/compresses
it to normalize so that the distribution of θ|X has total probability 1)∫ ∞

−∞
P (θ|X)dθ = 1

Hence we can say that the likelihood, and the posterior are directly proportional:

P (θ|X) ∝ P (X|θ)P (θ)

8.3 Maximum a Posteriori (MAP) Estimate

Maximum a Posteriori Estimate (MAP Estimate) Definition 8.3.1

Given some prior information (P (θ)) we can effectively get the MLE, but each probability is weighted by the
prior information.

θ̂MAP = argmax
θ

[
n∏

i=1

P (θ|X = xi)

]

= argmax
θ

[
n∏

i=1

P (X = xi|θ)× P (θ)

P (X = xi)

]

= argmax
θ

[
n∏

i=1

P (X = xi|θ)× P (θ)

]

Using the uniform distribution as P (θ) yields the MLE as each P (X = xi|θ) is equally weighted.

8.4 Conjugate Priors

We can continually use the MAP to get new prior information, to use with new evidence to refine the MAP. This
process of continually using the previous estimate and new evidence to refine the estimate is called Baysian Inference
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where P (θ|X) =
P (X|θ)× P (θ)

P (X)
=

P (X|θ)× P (θ)∫∞
−∞ P (X|θ)P (θ) dθ

Conjugate Prior Definition 8.4.1

When continually inferring new prior distributions, if the prior distribution is in the same family of dis-
tributions (i.e parameters can be different, but same distribution) as the posterior, then it is a conjugate
prior.

Likelihood Conjugate Prior
Bernoulli

BetaBinomial
Geometric
Poisson

Gamma
Exponential
Normal Normal
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Beta Prior Distribution Definition 8.4.2

Where α, β > 0 are hyper-parameters that determine the shape of the distribution, the parameter is θ:

Beta(θ;α, β) =
θα−1(1− θ)β−1

B(α, β)

Where the normalising value (ensures total integral sums to 1 so it is a valid pdf ) is:

B(α, β) =

∫ 1

0

θα−1(1− θ)β−1 dθ

maximal value/θMAP mean/bayesian estimate θB variance
argmaxθ[Beta(θ;α, β)] E[θ] E[θ2]− (E[θ])2

mα,β =
α− 1

α+ β − 2
µα,β =

α

α+ β
σ2
α,β =

αβ

(α+ β)2(α+ β + 1)

� When α = β it is symmetrical about 0.5

� higher values result in steeper/narrower distribution

� The MAP estimate pulls the estimate towards the prior.

� As α → 1 and β → 1 Beta(θ;α, β) → U(0, 1) and θ̂MAP → θ̂MLE .

8.5 Computing Terms

8.5.1 Bernoulli Distribution

Given some xi|θ ∼ Bernoulli(θ) we choose the conjugate pair as θ ∼ Beta(θ;α, β) where α > 1 and β > 1.
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We have a sample from the distribution: x = x1, x2, . . . , xn

Step 1. Given θ ∼ Beta(θ;α, β), the sample x = x1, x2, . . . , xn and sample mean x we need to calculate:

P (θ|x) =
P (x|θ)P (θ)

P (x)
=

P (x|θ)P (θ)∫∞
−∞ P (x|θ)P (θ) dθ

We know that the number of 1s in the sample is xn.

Step 2. First we calculate P (x|θ)P (θ) using the bernoulli PMF :

P (x|θ) =
n∏

i=1

P (xi|θ)

= θxn(1− θ)n−xn

= θxn(1− θ)n(1−x)

By the pdf of the Beta distribution:

P (θ) =
θα−1(1− θ)β−1

B(α, β)

Where B is the beta distribution normalization.

Hence we can multiply to get P (x|θ)P (θ):

P (x|θ)P (θ) = θxn(1− θ)n(1−x) θ
α−1(1− θ)β−1

B(α, β)

=
θxn+α−1(1− θ)n(1−x)+β−1

B(α, β)

Step 3. We derive P (θ|x):

P (θ|x) =
P (X|θ)P (θ)

P (
∫∞
−∞ P (X|θ)P (θ)) dθ

=

θxn+α−1(1− θ)n(1−x)+β−1

B(α, β)∫∞
−∞

θxn+α−1(1− θ)n(1−x)+β−1

B(α, β)
dθ

=

θxn+α−1(1− θ)n(1−x)+β−1

B(α, β)

1

B(α, β)

∫∞
−∞ θxn+α−1(1− θ)n(1−x)+β−1 dθ

=
θxn+α−1(1− θ)n(1−x)+β−1∫∞

−∞ θxn+α−1(1− θ)n(1−x)+β−1 dθ

= P (θ) given θ ∼ Beta(θ;xn+ α, n(1− x) + β)

Hence we have the posterior distribution:

θ ∼ Beta(θ;xn+ α, n(1− x) + β)
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New Bayesian Estimate Extra Fun! 8.5.1

The new bayesian estimate is a convex combination of the sample mean x and the prior mean (prior bayesian
estimate).

θ̂B =
xn+ α

xn+ α+ n(1− x) + β

=
xn+ α

α+ n+ β

=

 x︸︷︷︸
θ̂MLE

×
n

n+ α+ β

+

 α

α+ β︸ ︷︷ ︸
old θ̂B = µα,β

×
α+ β

n+ α+ β



8.5.2 Normal Distribution - Single Datapoint Sample

Given some x|µ ∼ N(µ, σ2) where σ2 is known and µ is unknown. Using a sample of a single datapoint x.

Step 1. The likelihood can be found using the Normal Distribution PDF :

P (x|µ) = f(x|µ)

=
1

σ
√
2π

× exp

{
−
(x− µ)2

2σ2

}
where exp{n} = en

Hence we now need to calculate the prior (the previous µ value that we will update with our estimate, using the
sample):

µ ∼ N(µ0, σ
2
0)

Hence we can now calculate the posterior distribution.

Step 2. We calculate the posterior distribution

P (µ|x) = f(µ|x) =
f(x|µ)f(µ)

f(x)
=

f(x|µ)f(µ)∫∞
−∞ f(x|µ)f(µ) dµ

...

= (some constant)× exp


−

(
µ−

µ0σ
2 + xσ2

0

σ2 + σ2
0

)2

2×
σ2σ2

0

σ2 + σ2
0


We can express the new variance as:

σ2
1 =

(
1

σ2
+

1

σ2
0

)−1

and µ1 = σ2
1

(
µ0

σ2
0

+
x

σ2

)

With the new posterior density function as:
µ|X ∼ N(µ1, σ

2
1)

8.5.3 Normal Distribution - Sample Size n

We extend the previous proof for a sample x = x1, . . . , xn and distribution xi|µ ∼ N(µ, σ2) where σ is known.
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Step 1. We calculate the likelihood:

P (x|µ) = f(x|µ) = f(x1|µ)f(x2|µ) . . . f(xn|µ)

=

n∏
i=1

1

σ
√
2π

exp

{
−
(xi − µ)2

2σ2

}

=

(
1

σ
√
2π

)n

×
n∏

i=1

exp

{
−
(xi − µ)2

2σ2

}

=

(
1

σ
√
2π

)n

× exp

{
n∑

i=1

−
(xi − µ)2

2σ2

}

=
1

σn(2π)n/2
× exp

{
n∑

i=1

−
(xi − µ)2

2σ2

}

And then the prior probability which is distributed by µ ∼ N(µ0, σ
2
0).

P (µ) = f(µ) =
1

σ0

√
2π

exp

{
−
(µ− µ0)

2

2σ2
0

}

Step 2. We can then calculate the posterior using baye’s theorem .

P (µ|x) =
1

σ0

√
2π

exp

{
−
(µ− µ0)

2

2σ2
0

}
×

1

σn(2π)n/2
× expr

{
n∑

i=1

−
(xi − µ)2

2σ2

}

=
1

(2π)(n + 1/2)σ0σn
exp

{
− µ2 + 2µµ0 − µ2

0

2σ2
0

−
n∑

i=1

x2
i − 2µxi + µ2

2σ2

}
...

∝ exp


−

(
µ−

µ0σ
2 +

∑n
i=1 σ

2
0xi

σ2 + nσ2
0

)2

2
σ2
0σ

2

σ2 + nσ2
0


Hence we have:

µ|x ∼ N(µ1, σ
2
1)

σ2
1 =

σ2σ2
0

σ2 + nσ2
0

=

(
1

σ2
0

+
n

σ2

)−1

and µ1 =
µ0σ

2 +
∑n

i=1 σ
2
0xi

σ2 + nσ2
0

= σ2
1

(
µ0

σ2
0

+
∑n

i=1

xi

σ2

)

8.5.4 Normal Distribution - Sufficient Statistic

Sufficient Statistic Definition 8.5.1

A statistic is sufficient for a given model (our chosen distribution) and its associated parameter if no other
statistic can be calculated from a sample that provides additional information in computing the value/estimate
of the unknown parameter.

For a normal distribution the sufficient statistic is the sample mean:

T (x) = x =
1

n

n∑
i=1

xi

Hence we will use the sample mean in calculating our posterior distribution.
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Step 1. We can directly calculate the posterior distribution using the likelihood and prior.

P (µ|x) = f(µ|x) =
f(µ)f(x|µ)∫∞

−∞ f(µ)f(x|µ) dµ

∝
f(µ)f(T (x)|µ)∫∞

−∞ f(µ)f(x|µ) dµ

∝ f(µ)f(T (x)|µ)

= f(µ)f(x|µ)

=
1

σ0

√
2π

exp

{
−
(µ− µ0)

2

2σ2
0

}
×

1√
2π

σ2

n

exp

{
−
n(x− µ)2

2σ2

}

...

∝ exp


−

(
µ−

µ0σ
2/n + xσ2

0

σ2/n + σ2
0

)2

2
σ2
0
σ2/n

σ2/n + σ2
0


Hence we have the exponential part of the pdf for a normal distribution.

Step 2. We can now compute the posterior distribution.

µ|x ∼ N(µ1, σ
2
1)

σ2
1 =

σ2
0
σ2/n

σ2/n + σ2
0

=

(
1

σ2
0

+
n

σ2

)−1

and µ1 =
µ0σ

2/n + xσ2
0

σ2/n + σ2
0

= σ2
1

(
µ0

σ2
0

+
xn

σ2

)
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Chapter 9

Credit

Image Credit

Front Cover ”A wave with a sunset in the background in the style of a textbook oil painting” - OpenAI
Dall-E.

Content

Based on the statistics course taught by Professor Giuliano Casale and Professor Chiraag Lala.

These notes were written by Oliver Killane.
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