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Chapter 1

Introduction

1.1 Course Structure & Logistics

Dr Narankar Dulay

The module is taught by Dr Narankar Dulay.

Theory For weeks 2 → 10:

� Elixir (learning programming language)

� Introduction

� Reliable Broadcast

� FIFO, casual and total order Broadcast

� Consensus

� Flip Improbability Result

� Temporal Logic of Actions

� Modelling Broadcast

� Modelling Consensus

1.2 Course Resources

The course website contains all available slides and notes.
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1.3 Distributed Systems

Distributed System Definition 1.3.1

A set of processes connected by a network, communicating by message passing and with no shared physical
clock.

� No total order on events by time (no shared clock)

� No shared memory.

� Network is logical - processes may be on the same OS process, same VM, same machine different
machines communicating over a physical network.

Distributed systems must contend with the inherit uncertainty (failure, communication delay and an inconsistent
view of the system’s state) in communication between potentially physically independent processes (fallible machines,
networks and software).

Leisle Lamport Extra Fun! 1.3.1

A computer scientist and mathematician, credited with creating TLA (used on this course), as well as being
the initial developer of latex (used for these notes).

” There has been considerable debate over the years about what constitutes a distributed system.
It would appear that the following definition has been adopted at SRC:

A distributed system is one in which the failure of a computer you didn’t even know existed can
render your own computer unusable. ”

1.4 Distributed Algorithms

Liveness Properties Definition 1.4.1

Something good happens eventually (Cannot be vi-
olated by finite computation)

Safety Properties Definition 1.4.2

Nothing bad happens (Only violated by finite com-
putations)

As liveness properties depend on computation, they can be constrained by a fairness property.
unconditional fairness Every process gets its turn infinitely often.
strong fairness Every process gets its turn infinitely often if it is enabled infinitely often.
weak fairness Every process gets its turn infinitely often if it is continuously enabled from a particular point

in the execution.

1.4.1 Key Aspects

1. The problem Specified in terms of the safety and liveness properties of the algorithm.

2. Assumptions made
Bounds on process delays (timing assumption)
Types of process failures tolerated (failure assumption)
Use of reliable message passing (communication assumption)

3. The algorithm Expresses the solution to the problem, given the assumptions.

� Must prove the algorithm is correct (satisfies all safety and liveness properties)

� Time and space complexity of the algorithm

Mutual Exclusion Properties Example Question 1.4.1

What are the safety, liveness and fairness properties required for mutual exclusion of processes over some
critical section?
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Safety At most one process accesses the critical section. (s∥t) ∧ (s ̸= t)⇒ ¬(cs(s) ∧ cs(t))
Liveness Every request for the critical section is eventually

granted.
req(s)⇒ (∃t : s ≼ t ∧ cs(t))

Fairness Requests are granted in the order.
req start(s) ∧ req start(t) ∧ (s → t)
⇒ (next cs(s)→ next cs(t))

Note that ≼ is the happens-before relation.

Concensus Definition 1.4.3

Processes Propose Values→ Processes decide on value→ Agreement Reached

Agreement Property Two correct processes cannot decide on different values.
Validity Property If all processes propose the same value, then the decided value is the proposed

value.
Termination Property System reaches agreement in finite time.

Consensus is impossible to solve for a fully asynchronous system, some timing assumptions are required.

It is difficult to prove the correctness of even simple distributed systems formally. By specifying an abstract
model of an algorithm automatic model checkers can be used to verify properties.

1.4.2 Timing Assumptions

Asynchronous Systems Definition 1.4.4

A system where process execution steps and inter-process communication take arbitrary time.

� No assumptions that processes have physical clocks.

� Sometimes useful to use logical clocks (used to capture a consistent ordering of events on a virtual
timespan)

Synchronous Systems Definition 1.4.5

A system containing assumptions on the upper bound timings for executing steps in a process.

� This means there are upper bounds for steps such as receiving messages, sending messages, arithmetic,
etc.

� Easier to reason about.

� Implementation must ensure bounds are always met, this can potentially require very high bounds (so
guarantee holds) which reduce performance. Eventually synchronous models were created to overcome
this.

Eventually Synchronous Systems Definition 1.4.6

Mostly synchronous systems. Do not have to always meet bounds, and can have periods of asynchronicity.
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1.4.3 Failure Classes

Process Failure Definition 1.4.7

A process internally fails and behaves incorrectly. Process sends messages it should not, or does not send
messages it should.

� Can be caused by a software bug, termination of process by user or OS, OS failure, hardware failure,
cyber attack by adversary.

� The process may be slowed down to the point it cannot send messages it needs to (or meet some timing
assumption)

Fail-Stop Failure can be reliably detected by other processes.
Fail-Silent Not Fail-Stop.
Fail-Noisy Failure can be detected, but takes time.
Fail-Recovery Failing process can recover from failure.

A process that is not faulty is a Correct Process.

Link Failure Definition 1.4.8

A link allowing for processes to communicate is
disconnected and remains disconnected.

A network connecting machines hosting pro-
cesses may become partitioned due to a link
failure

Byzantine Failure Definition 1.4.9

Also called Fail-Arbitrary, a process exhibits
some arbitrary behaviour (can be malicious).

Omission Failure Definition 1.4.10

Send Omission Fails to send all messages required by the algorithm.
Receive Omission Fails to properly receive all messages required.

1.4.4 Communication Assumptions

Asynchronous Message Passing

Processes continue after sending messages, they do not wait for a message to be delivered. It is possible to build a
synchronous message passing abstraction from asynchronous message passing.

Reliable Message Communication

Messages are assumed to be conveyed using a reliable medium.

� All sent messages are delivered.

� No duplicate messages are created.

� All delivered messages were sent.

Network failure is still a concern (breaks assumption), so TCP is used for messages, and more reliable message
passing abstractions built on top.

Message delays are bounded, as a timeout is used.

1.4.5 Complexity

Complexity can be characterised using:

� Number of messages exchanged.

� Size of messages exchanged.

� Time taken from the perspective of an external observer, or some clock on a synchronous system.

� Memory, CPU time or energy used by processes.
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Chapter 2

Elixir

2.1 learning Elixir

� Introduction To Elixir & Installation

� Elixir Documentation and Standard Library

� Elixir Learning Resources

� Devhints Exlixir Cheatsheet

� Elixir Quick Reference

� Learn Elixir in Y Minutes

Two Sum Example Question 2.1.1

Write a program to provide the two indexes of numbers in a list that sum to a given target. (This is the
famous leetcode problem two sum).

defmodule Solution do

@spec two_sum(nums :: [integer], target :: integer) :: [integer]

def two_sum(nums, target) do

nums

|> Enum.with_index()

|> Enum.reduce_while(%{}, fn {num, idx}, acc ->

case Map.get(acc, target - num) do

nil ->

{:cont, Map.put(acc, num, idx)}

val ->

{:halt, [idx, val]}

end

end)

end

end

We could also write this recursively with a helper function

defmodule Solution do

@spec two_sum(nums :: [integer], target :: integer) :: [integer]

def two_sum(nums, target) do

two_sum_aux(nums, target, %{}, 0)

end

defp two_sum_aux([next | rest], target, prevs, index) do

val = Map.get(prevs, target - next)

if val != nil do

[val, index]

else

two_sum_aux(rest, target, Map.put(prevs, next, index), index + 1)
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end

end

end

Add two numbers Example Question 2.1.2

Given The following linked list structure, write a program taking two numbers (represented in reverse as
linked lists), and produce a linked list of their sum. (This is leetcode problem add two numbers)

# Definition for singly-linked list.

defmodule ListNode do

@type t :: %__MODULE__{

val: integer,

next: ListNode.t() | nil

}

defstruct val: 0, next: nil

end

defmodule Solution do

@spec add_two_numbers(l1 :: ListNode.t | nil, l2 :: ListNode.t | nil) :: ListNode.t | nil

def add_two_numbers(l1, l2) do

x = get_list(l1) + get_list(l2)

if x == 0 do

%ListNode{val: 0, next: nil}

else

to_list(x)

end

end

defp get_list(node) do

case node do

%ListNode{val: v, next: n} -> v + 10 * get_list(n)

nil -> 0

end

end

defp to_list(n) do

case n do

0 -> nil

i -> %ListNode{val: rem(i,10), next: to_list(div(i,10))}

end

end

end

2.2 The Elixir System

Elixir Definition 2.2.1

A concurrent (with actors) and functional programming language used for fault tolerant distributed systems.

� A modernized successor language to Erlang

� Runs using BEAM (Erlang’s virtual machine) and hence compatible with erlang

� Has many additions over erlang (protocols, streams and metaprogramming)
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Elixir Processs Definition 2.2.2

A lightweight user level thread (green threads) managed by the runtime.

� Everything is a process.

� Processes are strongly isolated, when two processes interact it does not matter which nodes, or even
machines they run on.

� Processes share no resources (cannot share variables), they can only interact through message passing.

� Process creation and destruction is fast.

� Processes interact by message passing.

� Processes have unique names, if a name ios known it can be used to pass messages

� Error handling is non-local.

� Processes do what they are supposed to do or fail.

Elixir Node Definition 2.2.3

All elixir processes run within a node, a node can manage many processes (creation, scheduling, and garbage
collection).

� A node runs as an OS process, potentially with several OS threads scheduled across several cores.

� Multiple nodes can run on a single machine (or virtual machine such as a docker container).

� A node can efficiently manage thousands to millions of elixir processes.

Communication between processes is implemented through shared memory on the same machine and TCP when
over a network. However processes are not exposed to this - the same primitives are used for inter and intra
node/machine communication.

2.3 Message Passing

The send and receive statements are used for message passing.

# send somedata (any type) to process p

send p, somedata

# Wait until a message that matches the pattern is added to the message queue

# (or a timeout occurs), then remove it (potentially skipping over messages

# that do not match)

receive do

somepattern -> dosomething(somepattern)

# ... some other patterns

end

� Each process has its own message queue.

� Messages received are appended to the message queue of the receiving process.

� The sender does not wait for the message to be appended, it continues immediately after sending.

We can implement a basic client-server system in this way. Here we are using a component-based approach (split
the program into components, each asynchronously message pass), by convention each component is an elixir module,
modules can be instantiated in many processes & (by convention) have a public start() function.

defmodule Cluster do

def start do

# Spawn two processes, with the function start

# Server.ex and Client.ex are modules containing a public start function

# (Assuming we have tarted a client_node and server_node)

s = Node.spawn(:'server_node@172.19.0.2', Server, :start, [])

c = Node.spawn(:'client_node@172.19.0.1', Client, :start, [])

9
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# We send the PIDs of the processes to each other, we can pattern match on

# atoms for convenience in receiving

send s, { :bind, c }

send c, { :bind, s }

end

end

defmodule Server do

def start do

receive do

{ :bind, c } -> next(c)

end

end

# next is defined as private, here

# recursion is used for iteration.

# To avoid a stack overflow tail

# recursion is required

defp next(c) do

receive do

{ :circle, radius } ->

send c, { :result, 3.14 * radius

* radius}

{ :square, side } ->

send c, { :result, side * side}

end

next(c)

end

end

defmodule Client do

def start do

receive do

{ :bind, s } -> next(s)

end

end

defp next(s) do

send s, { :circle, 1.0 }

receive do

{ :result, area } ->

IO.puts "Area is #{area}"

end

Process.sleep(1000)

next(s)

end

end
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Chapter 3

Broadcast

3.1 Links (unassessed)

A link is a mechanism defining how two processes may interact by sending and receiving messages, and what properties
hold for message passing.

Fair Loss Link Definition 3.1.1

A weak link abstraction from which other links (e.g stubborn) can be built.

Fair-Loss Liveness Correct process p infinitely sends message m to correct process q
⇒ q receives m from p infinitely many times.

Finite Duplication Liveness Correct process p sends message m a finite number of times to q
⇒ m cannot be received infinitely many times from p.

No Creation Safety Some process q receives a messagem with sender p ⇒ p previously
sent m to q .
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Stubborn Link Definition 3.1.2

A link guaranteeing messages are received infinitely many times.

Stubborn Delivery Liveness Correct process p sends message m to correct process q ⇒ q re-
ceives m from p infinitely many times.

No Creation Safety Some process q receives a messagem with sender p ⇒ p previously
sent m to q .

No change in mind Example Question 3.1.1

Implement stubborn links with elixir using the fair loss link.

UNFINISHED!!!

Perfect Point-to-Point Link Definition 3.1.3

� Also called reliable message passing

Reliable Delivery Liveness Correct process p sends m to correct process q ⇒ q will eventually
receive m.

No Duplication Safety No message is received by a process more than once.
No Creation Safety Some process q receives a messagem with sender p ⇒ p previously

sent m to q .

3.2 Failure Detection

A failure detector provides a process with a list of suspected processes.

� Failure detectors make, and encapsulate some timing assumptions in order to determine which processes are
suspect.

� They are not fully accurate, and their specification allows for this.
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Perfect Failure Detector Definition 3.2.1

A failure detector that is never incorrect / is entirely accurate.

� Never changes its view on failure → once detected as crashed it cannot be unsuspected.

� Often represented as P

Strong Completeness Liveness Eventually every process that crashes is permanently detected as
crashed by every correct process.

Strong Accuracy Safety p detected ⇒ p has crashed. No process is suspected before it
crashed.

We can implement a failure detector using timeouts and a heartbeat.

� Perfect links used to send requests for heartbeat.

� If reply is not received before timeout, the process is suspected to have crashed.

� perfect links are only reliable for correct processes.

� Timeout period has to be long enough to send the heartbeat to all processes and for the receiving processes to
respond.

defmodule Perfect_Failure_Detector do

def start do

receive do

{ :bind, c, pl, processes, delay } ->

# Send the first heartbeat request

heartbeat_requests(delay)

next(c, pl, processes, delay, processes, MapSet.new())

end

end

defp next(c, pl, processes, delay, alive, crashed) do

receive do

# Send heartbeat requests over perfect link

{ :pl_deliver, from, :heartbeat_request } ->

send pl, { :pl_send, from, :heartbeat_reply }

next(c, pl, processes, delay, alive, crashed)

# Receive heartbeat responses over perfect links

{ :pl_deliver, from, :heartbeat_reply } ->

next(c, pl, processes, delay, MapSet.put(alive, from), crashed)

# Timeout period expired

# 1. Get all previously alive processes that did not respond (these have crashed)

# 2. Send crashed to each

:timeout ->

newly_crashed =

for p <- processes, p not in alive and p not in crashed, into: MapSet.new do p end

# Inform process p of all newly crashed processes

for p <- newly_crashed do send c, { :pfd_crash, p } end

# Send new heartbeat requests over perfect links

for p <- alive do send pl, { :pl_send, p, :heartbeat_request } end

heartbeat_requests(delay)

# Loop (empty set of alive, union set of old and newly crashed)

next(c, pl, processes, delay, MapSet.new(), Mapset.union(crashed, newly_crashed))

end
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end

defp heartbeat_requests(delay) do

# after delay milliseconds, timeout will be received by this process

Process.send_after(self(), :timeout, delay)

end

end

This implementation meets the properties of a perfect failure detector as:

Strong Completeness If a process crashes it will no longer reply to heartbeat messages, hence by perfect links no-
creation property, no correct process will receive a heartbeat. So every correct process will
detect a crash.

Strong Accuracy A process can only miss the timeout if it has crashed under out timing assumption.

Eventually Perfect Failure Detector Definition 3.2.2

A failure detector that is not entirely accurate.

� Can restore processes (no longer suspected).

� Often represented as ♢P

Strong Completeness Liveness Eventually every process that crashes is permanently detected as
crashed by every correct process.

Eventual Strong Accuracy Liveness Eventually no correct process is suspected by any other correct
process

3.3 Best Effort Broadcast

Best Effort Broadcast / BEB Definition 3.3.1

A non-reliable, single-shot broadcast.

� Only reliable if the broadcasting process is correct during broadcast (if crashing during broadcast only
some messages may be delivered, and processes may disagree on delivery)

� No delivery agreement guarantee (correct processes may disagree on delivery)

� Uses Perfect Point-to-Point Link and inherits properties from it.

Validity Liveness If a correct process broadcasts a message then every correct pro-
cess eventually receives it.

No Duplication Safety No message is received by a process more than once.
No Creation Safety No broadcast is delivered unless it was broadcast.

We can implement this in elixir using the send and receive primitives as Perfect Point-to-Point Link.

# Broadcast using perfect point-to-point links

# processes <- the list of processes in the broadcast space

# pl <- the perfect links process to use

# c <- the object broadcasting & being delivered

defmodule Best_Effort_Broadcast do

def start(processes) do

receive do {:bind, pl, c} -> next(processes, pl, c)

end

defp next(processes, pl, c) do

receive do

{:beb_broadcast, msg} ->

for dest <- processes do
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send pl, {:pl_send, dest, msg}

end

{:pl_deliver, src, msg} ->

send c, {:beb_deliver, src, msg}

end

next (processes, pl, c)

end

end

3.4 Reliable Broadcast

Reliable Broadcast Definition 3.4.1

Adds a delivery guarantee to best effort broadcast

Agreement Liveness If a correct process delivers message m then all correct processes
deliver m

All Properties from Best Effort Broadcast

� The combination of Validity and Agreement form a termination property (system reaches agreement
in finite time).

� Correct processes agree on messages delivered even if the broadcaster crashes while sending.

3.4.1 Eagre Reliable Broadcast

Eagre Reliable Broadcast Definition 3.4.2

A reliable broadcast where every process re-broadcasts every message it delivers.

� If the broadcasting process crashes, and only some correct processes deliver the message, then re-
broadcast ensures eventually all will receive.

� This broadcast is fail-silent

� Very inefficient to implement, broadcast to n processes results in O(n2) messages from O(n) BEB
broadcasts.

� Validity property combined with retransmission provides agreement.

All Properties from Reliable Broadcast

# Eagre reliable broadcast implemented using Best Effort Broadcast

# beb <- the best effort broadcast process

# client <- the object broadcasting & being delivered

defmodule Eagre_Reliable_Broadcast do

def start do

receive do { :bind, client, beb } -> next(client, beb, MapSet.new) end

end

defp next(client, beb, delivered) do

receive do

{ :rb_broadcast, msg } ->
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send beb, { :beb_broadcast, { :rb_data, our_id(), msg } }

next(client, beb, delivered)

{ :beb_deliver, from, { :rb_data, sender, msg } = rb_m } ->

if msg in delivered do

# Message was already delivered, so can be ignored

next(client, beb, delivered)

else

# Message is new, so add to delivered, deliver to c & rebroadcast

send client, { :rb_deliver, sender, msg }

send beb, { :beb_broadcast, rb_m }

next(client, beb, MapSet.put(delivered, msg))

end

end

end

end

3.4.2 Lazy Reliable Broadcast

Lazy Reliable Broadcast Definition 3.4.3

A reliable broadcast using Best Effort Broadcast with a Failure Detector to enforce agreement.

� Uses a perfect failure detector.

� When a process is detected to have crashed, all broadcasts delivered from the process are rebroadcasted

� Agreement is derived from the validity of best effort broadcast, that every correct process broadcasts
every message delivered from a crashed process and the properties of the perfect failure detector.

# Lazy Reliable Broadcast implemented using best effort broadcast

# beb <- the best effort broadcast process

# client <- the object broadcasting & being delivered

defmodule Lazy_Reliable_Broadcast do

def start do

receive do

{ :bind, processes, client, beb } ->

delivered = Map.new(processes, fn p -> {p, MapSet.new} end)

next(client, beb, processes, delivered)

end

end

defp next(client, beb, correct, delivered) do
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receive do

{ :rb_broadcast, msg } ->

# broadcast a message with our id

send beb, { :beb_broadcast, { :rb_data, our_id(), msg } }

next(client, beb, correct, delivered)

{ :pfd_crash, crashedP } ->

# Failure detector has detected a crashed process

# For each message delivered by the crashed process,

# rebroadcast (from them)

for msg <- delivered[crashedP] do

send beb, { :beb_broadcast, { :rb_data, CrashedP, msg } }

end

next(c, beb, MapSet.delete(correct, crashedP), delivered) # cont

{ :beb_deliver, from, { :rb_data, sender, msg } = rb_m } ->

# A message is delivered, if already received do nothing,

# otherwise record the delivered message,

if msg in delivered[sender] do

next(c, beb, correct, delivered)

else

send c, { :rb_deliver, sender, msg }

# add msg to the set of messages received from sender

sender_msgs = MapSet.put(delivered[sender], msg)

delivered = Map.put(delivered, sender, sender_msgs)

# Due to transmission delay, the sender may have crashed

# before this message is delivered, so we must check rebroadcast

# if this is the case.

if sender not in correct do

send beb, { :beb_broadcast, rb_m }

end

next(c, beb, correct, delivered)

end

end

end

end

3.4.3 Uniform Reliable Broadcast

Uniform Reliable Broadcast / URB Definition 3.4.4

Uniform Agreement Liveness If a process delivers a message, then all correct processes will
deliver the message.

All Properties from Best Effort Broadcast

� Implies that faulty processes deliver a subset of messages delivered to correct processes (stronger than
agreement - only for correct processes).

� Avoids any scenario where a crashed process broadcasts and only a crashed process delivers (correct
processes miss message).
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Majority Ack Uniform Reliable Broadcast Definition 3.4.5

A uniform reliable broadcast implementation that assumes a majority of processes are correct.

� Fail-silent and does not use a failure detector.

� If n processes may crash, then 2n + 1 processes are needed with at least n + 1 (majority) being correct

Each process tracks which other processes BEB them a specific message. Once the majority have done this, then
can URB deliver the message.

No Creation Provided by BEB.
No Duplication Messages delivered are tracked in a delivered set.
Validity As a URB sends via BEB (valid), and all messages BEB are eventually URB delivered.
Uniform Agreement If correct process Q URB delivers a message M , then Q was BEB delivered by a majority

of processes (assumed correct), which means at least 1 correct process BEB broadcast M .
Hence all correct processes eventually BEB deliver (and then URB deliver) M .

defmodule Majority_Ack_Uniform_Reliable_Broadcast do

def start do

receive do

{ :bind, client, beb, n_processes } ->

next(client, beb, n_processes, MapSet.new, MapSet.new, Map.new)
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end

end

# client -> the client using uniform reliable broadcast

# beb -> the best effort broadcast module used

# n_processes -> Need to know the number of processes to determine if more than half have delivered

# delivered -> messages that been urb_delivered

# pending -> messages that have been beb_broadcast but need to be urb-delivered

# bebd -> foreach message, the set of processes that have beb-delivered (seen) it

defp next(client, beb, n_processes, delivered, pending, bebd) do

receive do

# Broadcast a message to all

{ :urb_broadcast, msg } ->

# Use best effort broadcast to send message

send beb, { :beb_broadcast, { :urb_data, our_id(), msg } }

# Asynchronously check if the message can be delivered

send self(), :can_deliver

# Mark message as pending

new_pending = MapSet.put(pending, { our_id(), msg })

next(client, beb, n_processes, delivered, new_pending, bebd)

# Receive via best effort broadcast

{ :beb_deliver, from, { :urb_data, sender, msg } = urb_m } ->

# Get the processes that have seen this message, and add from to that set

msg_pset = Map.get(bebd, msg, MapSet.new)

next_bebd = Map.put(bebd, msg, MapSet.put(msg_pset, from))

# Asynchronously check if the message can be delivered

send self(), :can_deliver

# If the message has previously been recieved & placed in pending (do

# nothing), else we must add it to pending.

if { sender, msg } in pending do

next (client, beb, n_processes, delivered, pending, next_bebd)

else

send beb, { :beb_broadcast, urb_m }

new_pending = MapSet.put(pending, { sender, msg })

next(client, beb, n_processes, delivered, new_pending, next_bebd)

end

# Determine if a best effort broadcast delivery can be uniform reliably delivered

:can_deliver ->

# Can only deliver if

# - Message not already delivered

# - Message has been delivered by a majority of other processes

new_delivered_msgs =

for { sender, msg } <- pending,

msg not in delivered and

MapSet.size(bebd[msg]) > n_processes/2

into: MapSet.new

do send client, { :urb_deliver, sender, msg }

msg

end

new_delivered = MapSet.union(delivered, new_delivered_msgs)

next(client, beb, n_processes, new_delivered, pending, bebd)

end
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end

end

3.4.4 Process Configuration

3.5 Message Ordering

3.5.1 FIFO Message Delivery

First In First Out/FIFO Reliable Broadcast (FRB) Definition 3.5.1

Messages delivered in broadcast order.

FIFO Delivery Safety If a process broadcasts M1 ≺ M2 then all correct processes will
deliver M1 ≺ M2.

All Properties from Reliable Broadcast

� Only applies per-sender, this is analogous to sequential consistency in concurrency.

� The same scheme can be applied to uniform reliable broadcast (FIFO-URB).

� Same number of messages as the underlying reliable broadcast implementation.

defmodule FIFO_Reliable_Broadcast do # uses RB and sequence no's

@initial_seq 0

def start do

receive do

{ :bind, client, rb } -> next(client, rb, @initial_seq, Map.new, [ ])

end

end
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# pseqno -> for each process holds the seq_num of the next

# message to be frb-delivered from that process

# pending {> messages that have been rb-delivered to this process and

# awaiting to be frb-delivered to the client

#

# Message formats:

# { :frb_broadcast, msg }

# { :rb_deliver, from, {:frb_data, {sender, msg, seq } } }

defp next(client, rb, seq_num, pseqno, pending) do

receive do

{ :frb_broadcast, msg } ->

send rb, { :rb_broadcast, {:rb_data, {self(), msg, seq_num}}}

next(client, rb, seq_num + 1, pseqno, pending)

{ :rb_deliver, _, {:frb_data, {sender, _, _} = frb_msg } } ->

{new_pseqno, new_pending} = check_pending_and_deliver(client, sender, pseqno, pending ++ [frb_msg])

next(client, rb, seq_num, new_pseqno, new_pending)

end

end

defp check_pending_and_deliver(client, sender, pseqno, pending) do

# returns the first frb message from sender where the process seq matches the message seq

# If no sequence number exists in pseqno, we assume it is the first (0)

case Enum.find(pending, fn {from, _, seq} -> from == sender and seq == Map.get(pseqno, from, @initial_seq ) end) do

{_, msg, seq} = data ->

send client, {:fdb_deliver, msg}

new_pseqno = Map.put(pseqno, sender, seq + 1)

new_pending = List.delete(pending, data)

check_pending_and_deliver(client, sender, new_pseqno, new_pending)

_ -> {pseqno, pending}

end

end

end

3.5.2 Causal Order Message Delivery

Causal Order Relation Definition 3.5.2

A relation over messages M1 → M2 when M1 causes M2. A causal relation between messages is determined
by:

FIFO Order Process message broadcast order {broadcast,M1} ≺ {broadcast,M2} ⇒ M1 → M2.
Local Order Process delivers and then broadcasts {deliver,M1} ≺ {broadcast,M2}
Transitivity M1 → M2 ∧M2 → M3 ⇒ M1 → M3

Causal Order/CO Message Delivery Definition 3.5.3

Messages are delivered in an order respecting the causal order relation.

Causal Delivery Property Safety If a process delivers message M2, it must have already delivered
every message M1 such that M1 → M2.

All Properties from Uniform Reliable Broadcast
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No Wait Implementation

One implementation of this spec if a causal reliable broadcast that never waits. This is done by dropping any message
that precedes the delivered message that has not already been delivered.

� Each message has a list of past messages m_past

� The m_past contains all causally preceding messages as a bundle.

� Hence whenever URB delivering a message all preceding messages are already available to CRB deliver first.

Casual Delivery Ensured as each message contains all of its past messages which are CRB delivered prior to
the message.

No Creation, No Duplication and Validity from Uniform Reliable Broadcast

Past will grow large over time as the set of preceding messages grows.

� Large past uses up memory and network bandwidth

� Can selectively purge/garbage collect past messages (e.g when it is known a message recipient has already
received some past messages)

defmodule Causal_Reliable_Broadcast_No_Wait do

def start do

receive do

{ :bind, client, urb } -> next(client, urb, [ ], MapSet.new)

end

end

# past -> messages that have been crb_broadcast or crb_delivered

# (the list of messages that are causally precede)

# delivered -> messages that have been crb-delivered

#

# Message Formats:

# { :crb_broadcast, msg }

#

# Note: m_past are the preceding messages

# { :urb_deliver, from, { :crb_data, m_past, msg } }

defp next(client, urb, past, delivered) do

receive do

{ :crb_broadcast, msg } ->

send urb, { :urb_broadcast, { :crb_data, past, msg} }

# Add this message to the delivered messages

new_past = past ++ [{ self(), msg }]

next(client, urb, new_past, delivered)

{ :urb_deliver, from, { :crb_data, m_past, msg } } ->

if msg in delivered do

next(client, urb, past, delivered)

else
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# specify all preceding messages as delivered (even if they have not yet been urb_delivered - message dropped)

old_msgs =

for { past_sender, past_msg } = past_data <- m_past,

past_msg not in delivered

into: MapSet.new

# syntax error here

do send c, { :crb_deliver, past_sender, past_msg }

past_data

end

# crb deliver this message

send c, { :crb_deliver, from, msg }

# old messages marked as delivered

new_delivered = MapSet.put(MapSet.union(delivered, old_msgs), msg)

new_past = past ++ old_msgs ++ [{from, msg}]

next(client, urb, new_past, new_delivered)

end

end

end

end

Vector Clock Implementation

Dynamic Deadlock Detection Extra Fun! 3.5.1

Vector clocks can also be used in dynamically detecting data races in programs, as discussed in 60007 - Theory
and practice of Concurrent Programming.

� Each process maintains a vector clock of (processes → messages CRB delivered) and a count of messages that
it has RB broadcast.

� When sending a message, the the vector clock and the RB Broadcasts count are sent.

� A message is only delivered if the sender’s vector clock is ≤ the receiver’s vector clock (the current process has
seen all the messages the sender had seen, when it sent this message)

defmodule Causal_Reliable_Broadcast_Vector_Clock do

def start () do

receive do

{ :bind, client, rb } -> next(client, rb, 0, Map.new, [ ])

end

end
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# client -> The client to deliver messages to

# rb -> Reliable broadcast (used by crb to broadcast)

# vc -> Vector Clock: a map (pid -> number of messages crb delivered)

# pnum -> This process's unique number

defp next(client, rb, rb_broadcasts, vc, pending) do

receive do

{ :crb_broadcast, msg } ->

# Create a new vector clock with this broadcast included and send

send_vc = Map.put(vc, self(), rb_broadcasts)

send rb, { :rb_broadcast, { :crb_data, send_vc, msg }}

# continue

next(client, rb, rb_broadcasts + 1, vc, pending)

{ :rb_deliver, sender, { :crb_data, s_vc, s_msg }} ->

# Add delivered messages to pending and determine which can now be delivered.

{ new_vc, new_pending } = deliver(client, vc, pending ++ [{ sender, s_vc, s_msg }])

next(client, rb, rb_broadcasts, new_vc, new_pending)

end

end

defp deliver(client, vc, pending) do

for pending_tuple <- pending, reduce: {vc, []} do

{vc, still_pending} ->

{ sender, s_vc, s_msg } = pending_tuple

# <= is true if s_vc[p] <= vc[p] for every entry p

if s_vc <= vc do

# Deliver the message

send c, { :crb_deliver, sender, s_msg }

# Update the sender's entry in vector clock

new_vc = Map.put(vc, sender, Map.get(vc, sender, 0) + 1)

{new_vc, still_pending}

else

{vc, still_pending ++ [pending_tuple]}

end

end

end

end

3.5.3 Total Order Message Delivery

Total Order/TO Message Delivery Definition 3.5.4

All correct messages deliver the same global order of messages.

� Impossible in an asynchronous system as there is no shared clock, so no way to determine a shared
ordering.

� Does not need to be FIFO but is usually implemented so.

� Sometimes called atomic broadcast.

Uniform Total Order Safety If a correct or crashed process delivers M1 ≺ M2, then no correct
process delivers M2 ≺ M1.

All Properties from Uniform Reliable Broadcast

In order to have a total order, processes must reach a consensus on the global order.
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Chapter 4

Consensus

4.1 Motivation

Many algorithms require a set of processes running in a distributed system to agree on values (e.g order of messages,
program state).

� Processes each propose a value, some agreement algorithm occurs, and then all decide on the same value.

� Required for all processes to get a consistent view, even if a single leader decided on a value there would then
be a consensus required on which process is the leader to start, and when leaders fail.

� Often a replicated server/replica stores the state replicated over all processes (e.g the sequence of transactions
for a database, the current player count in a game).

Uniform Consensus Definition 4.1.1

Validity Safety If a process decides on a value, then this value was proposed by
some process.

Integrity Safety A process can only decide on one value at most.
Termination Liveness Each correct process eventually decides.
Uniform Agreement Safety Processes cannot decide on different values.

Regular Consensus Definition 4.1.2

A strengthening of Uniform Consensus to replace Uniform Agreement.

Validity, Integrity and Termination Properties from Uniform Consensus
Uniform Agreement Safety Correct Processes cannot decide on different values.

The FLP Impossibility result means that:

System Consensus
Synchronous System Possible
3 Synchronous System Possible
Asynchronous System Impossible

Eventually Synchronous System Definition 4.1.3

Messages take up to mT most of the time, sometimes longer.

NEEDS IMPROVEMENT!!!

4.2 Primary Backup

A simple consensus algorithm between two servers.
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� One server is the leader, a failure detector is used by the leader to check the other server.

� Only works in a synchronous system (time bound on all messages), violations on order of requests, and timing
will violate consensus.

4.3 FLP Impossibility Result

Fisher Lynch & Paterson Extra Fun! 4.3.1

From the paper Impossibility of Distributed Consensus with One Faulty Process:

”The consensus problem involves an asynchronous system of processes, some of which may be
unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it
is shown that every protocol for the problem has the possibility of non-termination, even with only
one faulty process.”

Michael Fischer, Nancy Lynch, Mike Paterson

FLP Impossibility Result Definition 4.3.1

In a purely asynchronous system we cannot use message timings to determine if a process has crashed (no
guarantee on timings), this even applies when:

� Agreeing on a single bit

� Reliable message passing is used

� Only one process crashes
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4.3.1 FLP Model

� receieve can return empty even if messages are present for P .

� Messages are delivered non-deterministically and can be received in any order with any arbitrary delay

� If receive is called infinitely many times, then every message will eventually be delivered.

� A message takes finite (but unbounded) time.

� Message buffer is a multiset, so can contain duplicates.

Configuration ([P1 : S1, . . . ], {(P ,M ), . . . }) All process states and the global message buffer.
Initial Configuration Input bit of each process is set, message buffer is empty.

C1 → C2

A step occur when a single process P :

� Performs receive(P) to get a message M or ∅
� Executes some code and changes its internal state

� Sends a finite number of messages to the global message buffer with send .

E = (P ,M ) Recepit of message M by process P is an event E .
C2 = E (C1) Applying event E to configuration C1 to get new configuration C2.

E1 ◦ E2 ◦ · · · ◦ En ≜ σ A schedule is a series of events composed.
σ(C ) A schedule is an execution if applied to the initial configuration.
σ(C ) = C → C ′ → . . . A sequence of steps corresponding to a schedule is called a run.
σ(C ) = C ′ C ′ is reachable from C , and accessible if C is the initial configuration.

A process can take infinitely many steps to run. Runs can be categorised as:

Deciding Run A run resulting in some process making a decision (writing to output bit).
Admissable Run A run where at least one process is faulty and every message is eventually received (every

process can receive infinitely many times).

A consensus protocol is totally correct if every admissable run is a deciding run.
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4.3.2 Valent Configurations

Proof is done by contradiction.

� Assume there is an algorithm A that solves consensus.

� Construct an execution in which A never reaches a decision (indecisive forever).

� Hence A cannot solve consensus, so by contradiction there can be no A.

By showing it is possible to start in a bivalent configuration and continue doing steps without reaching a decisive
configuration (univalent) we demonstrate it is impossible to certainly reach consensus.

4.3.3 Lemmas

Lemma 1: Confluence

Given configuration C and schedules σ1 and σ2 such that set of processes with steps in σ1 and σ2 are disjoint:

σ1(σ2(C )) ≡ σ2(σ1(C ))

Lemma 2: Initial Bivalent Configuration

We show that A has at least one initial bivalent configuration. UNFINISHED!!!

Lemma 3: Neighbouring Configurations

Given the following:

C = Bivalent configuration for algorithms A
E = (P ,M ) An event applicable to C

C = Set of all configurations reachable from C when applying E

D = {E (Cn)|Cn ∈ C} Set of all configurations reachable from C without applying E

Then D contains a bivalent configuration.

NEEDS IMPROVEMENT!!!
UNFINISHED!!!
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4.3.4 Theorem

There is an execution in which A never terminates
We can now show any deciding run allows for the construction of an infinite non-deciding run.

1. By Lemma 2 there is an initial bivalent configuration

2. Repeatedly apply Lemma 3, after each application, we can apply again - thus never reaching a decision.

4.4 Common Consensus Algorithms

Multipaxos Most popular algorithm, variants are used across industry; Google chubby (a
distributed lock manager), BigTable (a Google DBMS), AWS, Azure Fabric, Neo4j
(a graph DBMS), Apache Mesos (a distributed systems kernel).

Raft (Reliable, Replicated, Redundant And Fault Tolerant)A newer algorithm (for-
mally verified, and easier to understand) used in Meta’s Hydrabase, Kubernetes
and Docker Swarm.

PBFT (Practical Byzantine Fault Tolerance) and proof of work/proof of stake are used
for many blockchains backing cryptocurrencies such as Bitcoin.

Viewstamped Replication An early consensus algorithm designed to be easily added to non-distributed pro-
grams, it has been improved upon with VSR Revisited.

Atomic Broadcast Implemented in Apache Zookeeper (ZAB protocol) for building coordination ser-
vices and is used for services such as Apache Hadoop (similar to MapReduce).

CRDTs (Conflict-Free Replicated Datatypes) A data structure that can be updated inde-
pendently & across a distributed system and can resolve any inconsistencies itself,
with all eventually converging to the same value.

Faster Code Editing Extra Fun! 4.4.1

The in-development zed code editor uses CRDTs to represent text buffers in order to allow for performant
multiplayer editing. See their blog post here.

4.5 Paxos

Paxos Definition 4.5.1

A consensus algorithm wherein each server has:

Learner Receives decisions, alters the state based on agreed values.
Proposer Proposes values to Acceptors, associated with its proposal number. Receives accepted

values.
Acceptor Accepts values with increasing ballot numbers.
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UNFINISHED!!!

4.5.1 Leadership Based Paxos

Using a distinguished proposer as a leader to prevent livelock.

The algorithm is split into rounds, in each round there is a leader.

� The leader requests the last accepted value from each acceptor

� The leader determines which value to decide on.

� Each round can have a different duration.

� As messages have round number, servers can move onto the next round by ignoring older round’s messages.
Rounds can be de-synchronised

� Hence if the leader crashes, the acceptors can move just move onto the next round.

UNFINISHED!!!
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Chapter 5

Temporal Logic of Actions

5.1 Introduction

� A summary of TLA

UNFINISHED!!!

5.2 Terminology

Stuttering Step Definition 5.2.1

A transition where all state variables stay the same. Represented in TLA+ using the actions:

[A]v Action A occurs, or v is unchanged in successor
[A]⟨v1,v2,v3⟩ Same as above but with many variables

Actions Definition 5.2.2

Change the state of a module (primed variables → non-primed)

5.2.1 TLA+ Constructs

Based on an excellent cheat sheet created by professor Narankar Dulay, based on Model Based Testing Informal
Systems’s own.
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File Structure

module name
extends m1, . . . , mN extends multiple modules

constants c1, . . . , cN constants are defined in the .cfg file

variables v1, . . . , vN
Vars

∆
= ⟨v1, . . . , vN ⟩

Type
∆
= v1 formula ∧ . . . ∧ vN formula

Specification for state machine

Init
∆
= formula Initial state

Def 1
∆
= formula Definitions (any number of)

Can have any number of subactions of Next

Action1
∆
= action formula

Determine Next State

Next
∆
= Action1 ∨ . . . ∨ActionN

Fair
∆
= fairness formula ∧ . . .

Spec
∆
= Init ∧2[Next ]Vars ∧ Fair

NotDeadlock
∆
= 2(enabled Next) Properties

Typed = 2Type

---- MODULE name ----

EXTENDS m1, ..., mN \* extends multiple modules

CONSTANTS c1, ..., cN \* constants are defined in the .cfg file

VARIABLES v1, ..., vN

Vars == << v1, ..., vN >>

Type == v1_formula /\ ... /\ vN_formula

----------------------------------

\* Specification for state machine

Init == formula \* Initial state

Def1 == formula \* Definitions (any number of)

\* Can have any number of subactions of Next

Action1 == action_formula

\* Determine Next State

Next == Action1 \/ ... \/ ActionN

---------------------------------

Fair == fairness_formula /\ ...

Spec == Init /\ [][Next]_Vars /\ Fair

-------------------------------------

NotDeadlock == [](ENABLED Next) \* Properties

Typed = []Type

====

For the language definitions, the following key is used:
Booleans Functions Integers Sets Tuples \& Sequences

Logic

boolean BOOLEAN Set of boolean values {true, false}
true TRUE

false FALSE

¬ ~e Logical negation
a ∧ b a /\ b Logical and
a ∨ b a \/ b Logical or
a = b a = b Equality
a ̸= b a # b Not equal
a ⇒ b a => b Logical Implication (b ∨ ¬a) or IF a THEN b ELSE TRUE

a ≡ b a <=> b Equivalence

Quantifiers

∀ var ∈ S : e \A var \in S: e Expression e is true for all elements of set S
∃ var ∈ S : e \E var \in S: e Expression e is true for some element of set S
choose var ∈ S : e CHOOSE var \in S : e Always picks the same element e from set S (undefined for empty sets)

Integers

Int Int Set of all integers
Nat Nat Set of all natural numbers (not including 0)
1,−2, 12542355 1, -2, 12542355 Integer literals
a . . b a..b Integer range as a set (inclusive and empty is a > b)
a + b, a − b, a ∗ b a + b, a - b, a * b

Integer arithmetic
ab , a%b a ^ b, a \% b

a > b, a ≥ b, a < b, a ≤ b a > b, a >= b, a < b, a <= b Comparison operations

Strings

string STRING The set of all finite strings
””, ”hello world” "", "hello world" String literals
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Finite Sets

{a, b, c} {a,b,c} A set constructed of a, b and c (al the same type)
Cardinality(S ) Cardinality(S) Get the size/cardinality of set S
e ∈ S , e /∈ S e \in S, e \notin S Checking set membership
S1 ⊆ S2 S1 \subseteq S2 Checking a S1 is a subset (can be equal)
S1 ∪ S2 S1 \union S2 or S1 \cup S2 Set union operation
S1 ∩ S2 S1 \intersection S2 or S1 \cap S2 Set intersection
S1\S2 S1 \ S2 Set difference (S1− S2)
{vark ∈ S : P(var)} {var \in S: P(m)} Filter elements of S using predicate P
{e : k ∈ KeyS} {e: k \in KeyS} Map all keys from Keys with expression e

Functions & Maps

k ∈ keys 7→ e [k \in KeyS |-> e] [Function Construction] map all keys k to expression e
(which potentially uses k)

fn[k ] fn[k] [Function Application] get value associated to key k by
function fn

[fn except ! [k1] = e1, . . . ] [fn EXCEPT ![k1] = e1, ... Remap the key k1 for function fn (can use @ to reference
the original fn[k1]) with other remapings (the . . . )

[Keys → Values] Keys -> Values The set of all functions mapping the set of Keys to the set
of Values, (e.g STRING → Nat)

Records

[f 1 7→ e1, f 2 7→ e2, . . . ] [f1 |-> e1, f2 |-> e2, ...] Construct a record of fields f s containing ex-
pressions es

myRec.f myRec.f Access field f from a record myRec
[myRec except ! .f 1 = e1, . . . ] [rec EXCEPT !.f1 = e1, ...] Rebinding fields (similar to rebinding keys for

functions)
[f 1 : S1, f 2 : S2, . . . ] [f1: S1, f2: S2, ...] The set of all records with field names f s in

sets S s

Sequences

⟨e1, e2, e3⟩ <<e1, e2, e3>> Construct a sequence (list) from expressions (all the same
type)

mySeq [i ] mySeq[i] Get index i of sequence mySeq (indexed from 1)
seq1 ◦ seq2 seq1 \o seq2 Concatenation of sequences
Len(mySeq) Len(mySeq) Length of a given sequence
Append(mySeq , e) Append(mySeq, e) Add to end of a sequence
Head(mySeq) head(mySeq) Get first element of mySeq
Seq(S ) Seq(S) The set of all finite sequences over set S

Tuples

⟨a, b, c⟩ <<a, b, c>> Construct a tuple (types of elements can be different)
myTup[i ] myTup[i] Index a tuple
S1× S2× ...× Sn S1 \X S2 \X ... \X Sn Set of the cartesian product of the sets of tuples (each tuple

of form ⟨s1, s2, . . . sn⟩)

Miscellanous

let var
∆
= e1 ∈ e2 LET var == e1 \in e2 A let statement (e.g same as in Haskell)

if e then e1 else e2 IF e THEn e1 ELSE e2 If statements (statement is an expression itself - e.g like
Elixir, Haskell, Rust)
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Actions

var ′ var' [Primed variable] denotes the non-primed var in the next
state

unchanged ⟨v1, v2, . . . ⟩ UNCHANGED <<v1, v2, ...>> Shorthand for v1 = v1′ ∧ v2 = v2′ ∧ . . .
[A]v , [A]⟨v1,v2,... ⟩ [A]_v, [A]_<<v1, v2, ... >> Stuttering action (can apply action or variables v ,

v1, v2, . . . are unchanged)
⟨A⟩v , ⟨A⟩⟨v1,v2,... ⟩ <<A>>_v, <A>_<<v1,v2,v3>> Non-stuttering acton, the variables must v , v1, v2, . . .

change
enabled A ENABLED A true if action A is enabled

Formatting Extra Fun! 5.2.1

Operators on new lines affect precedence (rest of line is bracketed).
something == /\ A..

/\ B..

/\ C..

something == (A.. ) /\ (B.. ) /\ (C.. )

Temporal Logic

2F []F F is always true
3F <>F F is eventually true
F1 ; F2 F1 ~> F2 F1 leads to F2
WFv (A),SFv (A) WF_v(A), SF_v(A) Strong and weak fairness for action A

5.3 Examples

5.3.1 One Bit Clock
module OneBitClock

variable b
Type

∆
= b ∈ {0, 1}

Init
∆
= b = 0 ∨ b = 1

Next
∆
= ((b = 0) ∧ (b′ = 1)) ∨ ((b = 1) ∧ (b′ = 0))

Spec
∆
= Init ∧2[Next ]b

Typed
∆
= 2Type

---- MODULE OneBitClock ----

VARIABLE b

Type == b \in {0,1}

-----------------------------

Init == b=0 \/ b=1

Next == ((b=0) /\ (b'=1)) \/ ((b=1) /\ (b'=0))

Spec == Init /\ [][Next]_b

-----------------------------

Typed == []Type

====

A basic counter with states · · · → 0→ 1→ 0→ 1→ . . . .

� Contains a single variable b (b′ is the value of b in the next state).

� Starts as 0 or 1, and is always 0 or 1 (by the theorem Typed which states Type is always true)

� b is always updated in the next

The use of Init ∧2[Next ]b is equivalent to Init ∧2(Next ∨ (b = b′)) and allows for a stuttering step.

5.3.2 12 Hour Clock
module TwelveHourClock

extends Naturals
variable hour

Init
∆
= hour ∈ 0 . . 11

Next
∆
= hour ′ = (hour + 1)%12

Spec
∆
= Init ∧2[Next ]hour

Typed
∆
= 2Init

---- MODULE TwelveHourClock ----

EXTENDS Naturals

VARIABLE hour

-----------------------

Init == hour \in 0..11

Next == hour' = (hour + 1) % 12

Spec == Init /\ [][Next]_hour

-----------------------

Typed == []Init

====

The Init predicate is always true (from Typed ≜ 2Init) hence TLC can check the correctness of our Next implemen-
tation.
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5.3.3 24 Hour Clock

We can make use of TLC provided functions such as Print and PrintT .

module 24HourClock
extends Naturals, TLC
variable hour

Init
∆
= hour ∈ 0 . . 23

Next
∆
= hour ′ = (hour + 1)%24
∧ (

(hour ≤ 12 ∧ PrintT (⟨“[Morning] time:”, hour⟩))
∨ (hour > 12 ∧ hour < 18 ∧ PrintT (⟨“[Afternoon] time:”, hour⟩))
∨ (hour ≥ 18 ∧ PrintT (⟨“[Evening] time:”, hour⟩))

)
Spec

∆
= Init ∧ ⟨Next⟩hour

Typed
∆
= 2Init

---- MODULE 24HourClock ----

EXTENDS Naturals, TLC

VARIABLE hour

-----------------------

Init == hour \in 0..23

Next == hour' = (hour + 1) % 24

/\ (

(hour <= 12 /\ PrintT(<<"[Morning] time:", hour>>))

\/ (hour > 12 /\ hour < 18 /\ PrintT(<<"[Afternoon] time:", hour>>))

\/ (hour >= 18 /\ PrintT(<<"[Evening] time:", hour>>))

)

Spec == Init /\ <<Next>>_hour

-----------------------

Typed == []Init

====

We can see the short-circuiting of ∨ resulting in messages being printed, PrintT always returns true:

<<"[Morning] time:", 0>>

<<"[Morning] time:", 1>>

<<"[Morning] time:", 2>>

<<"[Morning] time:", 3>>

<<"[Morning] time:", 4>>

<<"[Morning] time:", 5>>

<<"[Morning] time:", 6>>

<<"[Morning] time:", 7>>

<<"[Morning] time:", 8>>

<<"[Morning] time:", 9>>

<<"[Morning] time:", 10>>

<<"[Morning] time:", 11>>

<<"[Morning] time:", 12>>

<<"[Afternoon] time:", 13>>

<<"[Afternoon] time:", 14>>

<<"[Afternoon] time:", 15>>

<<"[Afternoon] time:", 16>>

<<"[Afternoon] time:", 17>>

<<"[Evening] time:", 18>>

<<"[Evening] time:", 19>>

<<"[Evening] time:", 20>>

<<"[Evening] time:", 21>>

<<"[Evening] time:", 22>>

<<"[Evening] time:", 23>>

5.4 Model Checking with TLC

TLC uses a .cfg file to configure the parameters for running the model checker.

\* Defines a state machine

SPECIFICATION Spec

\* Properties that must be true for every state

PROPERTY NotDeadlock Typed \* Note TLC checks for absence of deadlock by default

\* Specifying invariants

INVARIANT Type \* equivalent to PROPERTY []Type

\* Define constant values

CONSTANT Data = {1,2}
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\* Specifying the init and next states

INIT Init

NEXT Next

The TLC model checker performs a breadth-first search of all possible states to check properties hold, or the reachable
state in which a violation takes place.

� Safety properties can be encoded (if violated in any state at any time, property is violated)

� Liveness is encoded as determining that for times ∃t ′.∀t .[satisified(state(t ′)) ∧ t ′ ≥ t ].

5.4.1 Asynchronous Messages

TLA+

module AsyncMessage
extends Naturals
constant Data

variables value, ready , ack
Vars

∆
= ⟨value, ready , ack⟩ Collection of variables values

Type
∆
= value ∈ Data ∧ ready ∈ {0, 1} ∧ ack ∈ {0, 1}

Initial state

Init
∆
= value ∈ Data ∧ ready ∈ {0, 1} ∧ ack = ready

Action to send a message (not yet acknowledged)

Send
∆
= ready = ack ∧ value ′ ∈ Data ∧ ready ′ = 1− ready ∧ unchanged ⟨ack⟩

Action to recieve a message with acknowledgement

Receive
∆
= ready ̸= ack ∧ ack ′ = 1− ack ∧ unchanged ⟨value, ready⟩

Module can either send or recieve (cannot do both due to unchanged in both actions)

Next
∆
= Send ∨ Receive

Init is true, and next is always true with Vars potentially changed

Spec
∆
= Init ∧2[Next ]Vars

Constraints: Value is always in data, ready & ack are always 0 or 1

Typed
∆
= 2Type

Code

---- MODULE AsyncMessage ----

EXTENDS Naturals

CONSTANT Data

VARIABLES value, ready, ack

Vars == << value, ready, ack >> \* Collection of variables values
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Type == value \in Data /\ ready \in {0,1} /\ ack \in {0,1}

-----------------------------

\* Initial state

Init == value \in Data /\ ready \in {0,1} /\ ack = ready

\* Action to send a message (not yet acknowledged)

Send == ready = ack /\ value' \in Data /\ ready' = 1 - ready /\ UNCHANGED <<ack>>

\* Action to recieve a message with acknowledgement

Receive == ready # ack /\ ack' = 1 - ack /\ UNCHANGED <<value, ready>>

\* Module can either send or recieve (cannot do both due to unchanged in both actions)

Next == Send \/ Receive

\* Init is true, and next is always true with Vars potentially changed

Spec == Init /\ [][Next]_Vars

-----------------------------

\* Constraints: Value is always in data, ready & ack are always 0 or 1

Typed == []Type

============================

Configuration

\* Don't need to use INIT and NEXT as they are used in Spec

SPECIFICATION Spec

\* Data needs to be an enumerable

CONSTANTS

Data = {"hello", "world"}

INVARIANT Type

5.4.2 Channel

TLA+

module Channel
extends Naturals
constant Data
variable channel

Check whether channel is in the set (created by use of . . ) of valid records

Type
∆
= channel ∈ [value : Data, ready : 0 . . 1, ack : 0 . . 1]

Init
∆
= Type ∧ channel .ack = channel .ready

Set value to d and flip ready

Send(d)
∆
= channel .ready = channel .ack ∧ channel ′ = [channel except ! .value = d , ! .ready = 1−@]

Flip ack , otherwise leave channel the same

Receive
∆
= channel .ready ̸= channel .ack ∧ channel ′ = [channel except ! .ack = 1−@]

Can only send valuesa that are in Data

SendSome
∆
= ∃ d ∈ Data : Send(d)

Either send or receieve (note can both send and recieve at the same time)
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Next
∆
= SendSome ∨ Receive

Spec
∆
= Init ∧2[Next ]channel

Typed
∆
= 2Type

Code

---- MODULE Channel ----

EXTENDS Naturals

CONSTANT Data

VARIABLE channel

\* Check whether channel is in the set (created by use of ..) of valid records

Type == channel \in [value: Data, ready: 0 .. 1, ack: 0 .. 1]

------------------------

Init == Type /\ channel.ack = channel.ready

\* Set value to d and flip ready

Send(d) == channel.ready = channel.ack /\ channel' = [channel EXCEPT !.value =d, !.ready = 1 - @]

\* Flip ack, otherwise leave channel the same

Receive == channel.ready # channel.ack /\ channel' = [channel EXCEPT !.ack = 1 - @]

\* Can only send valuesa that are in Data

SendSome == \E d \in Data : Send(d)

\* Either send or receieve (note can both send and recieve at the same time)

Next == SendSome \/ Receive

Spec == Init /\ [] [Next]_channel

------------------------

Typed == []Type

========================

Configuration

SPECIFICATION Spec

CONSTANTS

Data = {"hello", "world"}

INVARIANT Type

5.4.3 Unbounded FIFO

TLA+

module UnboundedFIFO
extends Naturals, Sequences
constant Messages
variables in, out , buffer
Vars

∆
= ⟨in, out , buffer⟩

In
∆
= instance Channel with Data ← Messages, channel ← in

Out
∆
= instance Channel with Data ← Messages, channel ← out
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In and out invariants hold, and the buffer is within the infinite set of sequences that only contain items in Messages

Type
∆
= In !Type ∧Out !Type ∧ buffer ∈ Seq(Messages)

Init requires init for in and out channels and an empty buffer

Init
∆
= In !Init ∧Out !Init ∧ buffer = ⟨⟩

Sending to in does not change buffer or out, uses In channel’s receive

SendIn
∆
= let Send(msg)

∆
= In !Send(msg) ∧ unchanged ⟨out , buffer⟩in ∃msg ∈ Messages : Send(msg)

Receiving from in appends to the buffer, but does not changed the output (buffered)

ReceiveIn
∆
= In !Receive ∧ buffer ′ = Append(buffer , in.value) ∧ unchanged out

Sending to out requires the buffer be non-empty, and takes from the head of the buffer. In is unchanged

SendOut
∆
= buffer ̸= ⟨⟩ ∧Out !Send(Head(buffer)) ∧ buffer ′ = Tail(buffer) ∧ unchanged in

Receiving from out does not changed buffer or in, but does require Out ’s receive

ReceiveOut
∆
= Out !Receive ∧ unchanged ⟨in, buffer⟩

Can do one of four actions in each step

Next
∆
= SendIn ∨ ReceiveIn ∨ SendOut ∨ ReceiveOut

Next is a stuttering action

Spec
∆
= Init ∧2[Next ]Vars

Typed
∆
= 2Type

Code

---- MODULE UnboundedFIFO ----

EXTENDS Naturals, Sequences

CONSTANT Messages

VARIABLES in, out, buffer

Vars == <<in, out, buffer>>

In == INSTANCE Channel WITH Data <- Messages, channel <- in

Out == INSTANCE Channel WITH Data <- Messages, channel <- out

\* In and out invariants hold, and the buffer is within the infinite set of sequences that only contain items in Messages

Type == In!Type /\ Out!Type /\ buffer \in Seq(Messages)

------------------------------

\* Init requires init for in and out channels and an empty buffer

Init == In!Init /\ Out!Init /\ buffer = <<>>

\* Sending to in does not change buffer or out, uses In channel's receive

SendIn == LET Send(msg) == In!Send(msg) /\ UNCHANGED <<out, buffer>> IN \E msg \in Messages : Send(msg)

\* Receiving from in appends to the buffer, but does not changed the output (buffered)

ReceiveIn == In!Receive /\ buffer' = Append(buffer, in.value) /\ UNCHANGED out

\* Sending to out requires the buffer be non-empty, and takes from the head of the buffer. In is unchanged

SendOut == buffer # <<>> /\ Out!Send(Head(buffer)) /\ buffer' = Tail(buffer) /\ UNCHANGED in

\* Receiving from out does not changed buffer or in, but does require Out's receive

ReceiveOut == Out!Receive /\ UNCHANGED <<in, buffer >>

\* Can do one of four actions in each step

Next == SendIn \/ ReceiveIn \/ SendOut \/ ReceiveOut

\* Next is a stuttering action

Spec == Init /\ [][Next]_Vars

------------------------------

Typed == []Type

==============================
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Configuration

SPECIFICATION Spec

CONSTANT Messages = {"hello", "world"}

INVARIANT Type

TLC Check

The TLC check will hang as the unbounded fifo has an unbounded number of states to check (as the buffer can
be any size). We can add a constraint to bound it to allow for checking a smaller buffer capacity (reduces possible
states).

5.4.4 Bounded FIFO

TLA+

module BoundedFIFO
extends Naturals, Sequences
constant Messages, N
variables in, out , buffer
Vars

∆
= ⟨in, out , buffer⟩

In
∆
= instance Channel with Data ← Messages, channel ← in

Out
∆
= instance Channel with Data ← Messages, channel ← out

In and out invariants hold, and the buffer is within the infinite set of sequences that only contain items in Messages

Type
∆
= In !Type ∧Out !Type ∧ buffer ∈ Seq(Messages)

We ensure the size constant is correct

assume (N ∈ Nat) ∧ (N > 0)

Init requires init for in and out channels and an empty buffer

Init
∆
= In !Init ∧Out !Init ∧ buffer = ⟨⟩

Sending to in does not change buffer or out, uses In channel’s receive

SendIn
∆
= let Send(msg)

∆
= In !Send(msg) ∧ unchanged ⟨out , buffer⟩in ∃msg ∈ Messages : Send(msg)

Receiving from in appends to the buffer, but does not changed the output (buffered)

ReceiveIn
∆
= In !Receive ∧ buffer ′ = Append(buffer , in.value) ∧ unchanged out

Sending to out requires the buffer be non-empty, and takes from the head of the buffer. In is unchanged

SendOut
∆
= buffer ̸= ⟨⟩ ∧Out !Send(Head(buffer)) ∧ buffer ′ = Tail(buffer) ∧ unchanged in

Receiving from out does not changed buffer or in, but does require Out ’s receive

ReceiveOut
∆
= Out !Receive ∧ unchanged ⟨in, buffer⟩

Can do one of four actions in each step

Next
∆
= (SendIn ∨ ReceiveIn ∨ SendOut ∨ ReceiveOut) ∧ (ReceiveIn ⇒ (Len(buffer) < N ))

Next is a stuttering action

Spec
∆
= Init ∧2[Next ]Vars

Typed
∆
= 2Type
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Code

---- MODULE BoundedFIFO ----

EXTENDS Naturals, Sequences

CONSTANT Messages, N

VARIABLES in, out, buffer

Vars == <<in, out, buffer>>

In == INSTANCE Channel WITH Data <- Messages, channel <- in

Out == INSTANCE Channel WITH Data <- Messages, channel <- out

\* In and out invariants hold, and the buffer is within the infinite set of sequences that only contain items in Messages

Type == In!Type /\ Out!Type /\ buffer \in Seq(Messages)

\* We ensure the size constant is correct

ASSUME (N \in Nat) /\ (N > 0)

------------------------------

\* Init requires init for in and out channels and an empty buffer

Init == In!Init /\ Out!Init /\ buffer = <<>>

\* Sending to in does not change buffer or out, uses In channel's receive

SendIn == LET Send(msg) == In!Send(msg) /\ UNCHANGED <<out, buffer>> IN \E msg \in Messages : Send(msg)

\* Receiving from in appends to the buffer, but does not changed the output (buffered)

ReceiveIn == In!Receive /\ buffer' = Append(buffer, in.value) /\ UNCHANGED out

\* Sending to out requires the buffer be non-empty, and takes from the head of the buffer. In is unchanged

SendOut == buffer # <<>> /\ Out!Send(Head(buffer)) /\ buffer' = Tail(buffer) /\ UNCHANGED in

\* Receiving from out does not changed buffer or in, but does require Out's receive

ReceiveOut == Out!Receive /\ UNCHANGED <<in, buffer >>

\* Can do one of four actions in each step

Next == (SendIn \/ ReceiveIn \/ SendOut \/ ReceiveOut) /\ (ReceiveIn => (Len(buffer) < N))

\* Next is a stuttering action

Spec == Init /\ [][Next]_Vars

------------------------------

Typed == []Type

==============================

Configuration

SPECIFICATION Spec

CONSTANT

Messages = {"hello", "world"}

N = 8 \* number of messages in buffer

INVARIANT Type
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Chapter 6

Linear Time Logic

6.1 Temporal Logic

Temporal Logic Definition 6.1.1

A logic system for representing and reasoning about propositions qualified with time.

� Useful in formally verifying systems with state that changed over time.

� Can be used in expressing properties on infinite computations (even in concurrent & distributed systems)

� Adds operators such as 2 (always true) and 3 (eventually true).

Linear TIme Logics Definition 6.1.2

Properties can be defined on a linear timeline (e.g
Linear Time Logic upon which TLA+ is based)

Branching Time Logic Definition 6.1.3

Properties can be defined on a branching/tree like
timeline (e.g Computational Tree Logic)

6.2 Operators

Operator TLA+ LTL Description
NEXT ⃝p, Np or Xp p is true in the next moment/state.
ALWAYS/Globally 2p 2p p is true now and in all future moments/states.
EVENTUALLY/Finally 3p 3p or Fp p is true now or will be in the future.
UNTIL pUq p will be true until q becomes true (will occur eventually)

in the future.
WEAK UNTIL pWq p is true until q is true (may never occur, in which case p

is true forever).
RELEASE pRq q will be true until p becomes true. p may never be true,

in which case q is true forever.
STRONG RELEASE pMq q is true until p becomes true (will occur eventually).
LEADS TO p ; q Always if p is true, then eventually q will become true (p

always leads to q becoming true). (2(p ⇒ 3q)).

6.2.1 Next

Not TLA+ LTL Supported (⃝p)@t ⇔ p@(t + 1)
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All those moments will be lost in time. . . Example Question 6.2.1

Formalise the following:

1. If you are hungry, next you’ll be sad.

2. If you’re hungry and have food, you’ll eat next.

3. Time always increases

1. hungry ⇒⃝sad

2. hungry ∧ has(food)⇒⃝(¬hungry)

3. t = time()⇔⃝(time() = t + 1)

6.2.2 Always

TLA+ Supported LTL Supported 2p ⇔ ∀t ′. (t ′ ≥ t)⇒ p@t ′

In TLA+ ALWAYS is used to express invariants (true for all states and behaviours).

There is no next time! Example Question 6.2.2

Formalise the following:

1. Bad things never happen

2. If x = 2 then it is even

3. The next counter is always larger than the current

4. If the config is true, then x always equals y

5. A sequence in which p flips from true to false

1. 2(¬bad)

2. 2(x = 2⇒ even(x ))

3. 2(counter() = c ⇒⃝(counter() = c + 1))

4. config ⇒ 2(x = y)

5. We can formalise as 2(p ⇔⃝(¬p))

6.2.3 Eventually

TLA+ Supported LTL Supported 3p ⇔ ∃t ′. t ′ ≥ t ∧ p@t ′
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I’ll get around to it! Example Question 6.2.3

Formalise the following:

1. At one moment x is true, and one moment y is true, but not at the same time.

2. If q is true and q is false, then p is true next, or some subsequent moment.

3. Everything sent is eventually delivered.

1. 3x ∧3y ∧2(¬(x ∧ y))

2. q ∧ ¬p ⇒⃝(3p)

3. ∀msg . 2(Send(msg)⇒ 3Delivered(msg)) ≡ ∀msg . Send(msg) ; Delivered(msg)

6.2.4 Until

Not TLA+ LTL Supported p U q ⇔ ∃t ′. (t ′ > t ∧ q@t ′ ∧ (∀s. (t ′ > s ≥ t)⇒ p@s))

� p U q requires that q is eventually true (⋄q), where as WEAK UNTIL does not require this.

Gonna live until I die Example Question 6.2.4

A student attempts to formalise the notion that:
”Being born always means you are alive until you die”

With the TLT proposition:

∀person. born(person)⇒ alive(person) U die(person)

What issues are there with this answer? Can you suggest a solution?

The main issue is that it is possible to:

� Be both alive and dead simultaneously

� Come back to life/be born or die multiple times

We could attempt to fix this by:

� Having the death event prevent any starts to periods of death next & into the future

� Having born occur only once for a person

∀person.born(person)⇒ (alive(person) ∧ ¬dead(person)) U (¬alive(person) ∧ dead(person))
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6.2.5 Always Eventually

TLA+ Supported LTL Supported 23p

p occurs infinitely often, some moments can have p not hold, but there is always another moment in the future where
p holds.

Intermittently True Example Question 6.2.5

Formalise the following:

1. Sometimes I am hungry

2. Sometimes I’m hungry

1. 23hungry(me)

2. 23hungry(me) ∧2(hungry(me)⇔⃝eat(me))

6.2.6 Eventually Always

TLA+ Supported LTL Supported 32p

Forever after. . . Example Question 6.2.6

Model the state of a sticky switch s, which will remain stuck to true at some point.

32s

Note that a sequence with s going between true and false still satisfies this, it just has to stick to true forever
eventually.

6.2.7 Equivalences

Distribution

2(p ∧ q) ≡ 2p ∧2q
2(p ∨ q) ≡ 2p ∨2q

⃝(p ∧ q) ≡ ⃝p ∧⃝q
⃝(p ∨ q) ≡ ⃝p ∨⃝q

(p ∧ q) U r ≡ (p U r) ∧ (q U r)
p U (q ∨ r) ≡ (p U q) ∨ (p U r)

Dual

2¬p ≡ ¬3p 3¬p ≡ ¬2p ⃝¬p ≡ ¬⃝ p
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Miscellanous

22p ≡ 2p
33p ≡ 3p

p U (q U r) ≡ (p U q) U r ≡ p U r true U p ≡ 3p

6.3 Fairness

Fairness properties are constraints assumed to be enforced by the system (e.g fairly select which thread to schedule)
to ensure the system progresses.

� Without fairness constraints the system may fail to make progress (e.g a thread livelocking a system as it waits
on an unfair mutex/lock (indefinitely postponed))

� Actions can be enabled or disabled. An action is enabled if it can be applied without violating any constraints.

� A stuttering step [A]v which may not change the value of any variables ([A]v ≜ A ∨ v = v ′)

� A non-stuttering step ⟨A⟩v must change v (⟨A⟩v ≜ A ∧ v ̸= v ′).

Strong Fairness Definition 6.3.1

23A⇒ 23A

If action A is enabled infinitely often then it is ex-
ecuted infinitely often.

Strong Fairness⇒Weak Fairness

SFv (A) ≜ 23(enabled ⟨A⟩v )⇒ 23⟨A⟩v

SF_v(A) == []<>(ENABLED <<A>>_v)

=> []<><<A>>_V

Weak Fairness Definition 6.3.2

32A⇒ 23A

If action A is eventually permanently enabled, then
it is executed infinitely often.

WFv (A) ≜ 32(enabled ⟨A⟩v )⇒ 23⟨A⟩v

WF_v(A) == <>[](ENABLED <<A>>_v)

=> []<><<A>>_v

Absolute Fairness Definition 6.3.3

23A Absolute Fairness⇒ Strong Fairness

Action A is executed infinitely often, even if it is not enabled.

6.4 Safety

We can assert safety properties in each step.

Safety Property Example Question 6.4.1

Explain the safety properties of the following TLA+ spec.

Spec ≜ Init ∧2[Next ]Vars
Spec == Init /\ [][Next]_Vars

If Init is not true, or there is some state for which Next is false, but some Vars change, then there is a safety
property violation.

Deadlocked Example Question 6.4.2

Explain the safety properties of the following TLA+ spec.

NoDeadlock ≜ 2(enabled Next) NoDeadlock == [](ENABLED Next)

Safety property asserting that there is no state for which Next is disabled/cannot be satisfied.
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6.5 Liveness

Properties asserting what must happen eventually. As they cannot be violated in finite steps, we must consider
infinite behaviours through temporal logic.

� Typically in TLA+ rather than an ad-hoc/specific implementation per spec, we use some conjunction ofWFv (A)
and SFv (A) are used to specify the liveness properties to be checked.

Fairness ≜ WFv (Action1) ∧ SFv (Action2) ∧ . . .

Spec ≜ Init ∧2[Next ]Vars ∧ Fairness

LivenessProp ≜ . . . (Some temporal formula)

Fairness == WF_v(Action1) /\ SF_v(Action2) /\ ...

Spec == Init /\ [][Next]_Vars /\ Fairness

LivenessProp == \* Some temporal formula

6.5.1 LiveClock12

We first develop a basic 12 hour clock.

module Clock12
extends Naturals
variable hour

12 hour clock state constraint

Type
∆
= hour ∈ 1 . . 12

Initial and Next Action

Init
∆
= Type

Next
∆
= hour ′ = (hour%12) + 1

Spec
∆
= Init ∧2[Next ]hour

Typed
∆
= 2Type

---- MODULE Clock12 ----

EXTENDS Naturals

VARIABLE hour

\* 12 hour clock state constraint

Type == hour \in 1..12

-----------------------

\* Initial and Next Action

Init == Type

Next == hour' = (hour % 12) + 1

\*

Spec == Init /\ [][Next]_hour

-----------------------

Typed == []Type

=======================

SPECIFICATION Spec

INVARIANT Type

We can then extend this module with fairness and liveness properties.

module LiveClock12
extends Clock12

Fairness
∆
= WFhour (Next)

LiveSpec
∆
= Spec ∧ Fairness

There is always another hour

AlwaysTick
∆
= 23⟨Next⟩hour

All hour states are always used in the future

AllTimes
∆
= ∀ hr ∈ 1 . . 12 : 23(hour = hr)

---- MODULE LiveClock12 ----

EXTENDS Clock12

\*

Fairness == WF_hour(Next)

LiveSpec == Spec /\ Fairness

----------------------------

\* There is always another hour

AlwaysTick == []<><<Next>>_hour

\* All hour states are always used in the future

AllTimes == \A hr \in 1 .. 12 : []<>(hour = hr)

==========================

SPECIFICATION LiveSpec

PROPERTIES

Typed

AlwaysTick

AllTimes

47



6.5.2 Alternating Bit Protocol

UNFINISHED!!!
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Chapter 7

Modelling Consensus

UNFINISHED!!!
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Chapter 8

Credit

Image Credit

Cover Art ”purple sunflowers field sunset oil painting” - Openai Dall.E

Content

Based on the distributed algorithms course taught by Prof Narankar Dulay.

These notes were written by Oliver Killane.
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