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Chapter 1

Introduction

1.1 Logistics

Dr Holger Pirk

First Half

� Hardware efficiency in complex systems

� Scaling up

� ”getting the most bang for buck”

Dr Luis Vilanova

Second Half

� Scale out Processing

1.1.1 Extra Resources

UNFINISHED!!!

1.2 What is System Performance Engineering

System Definition 1.2.1

A collection of components interacting to achieve a greater goal.

� Usually applicable to many domains (e.g a database, operating system, webserver). The goal is domain-
agnostic

� Designed to be flexible at runtime (deal with other interacting systems, real conditions) (e.g OS with
user input, database with varying query volume and type)

� Operating conditions are unknown at development time (Database does not know schema prior, OS
does not know number of users prior, Tensorflow does not know matrix dimensionality prior)

Large & complex systems are typically developed over years by multiple teams.

The challenge with system performance engineering is to make systems maintainable, widely applicable and fast.
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System Performance Engineering Definition 1.2.2

Performance engineering encompasses the techniques applied during a systems development life cycle to ensure
the non-functional requirements for performance will be met.

� Functional requirements (correctness, features) are assumed to be met.

�

High Performance Computing Definition 1.2.3

High performance programming uses highly distributed & parallel computer systems (e.g supercomputers,
clusters) to solve advanced problems.

� Focuses on solving a single computationally difficult problem.

� Workloads are well defined and known at development time.

� Sometimes supported by custom hardware (e.g FPGAs, ASICs, custom CPU extensions)

1.3 Performance Engineering Process

1.3.1 Metrics

A target metric is used to quantitatively measure any improvement in performance (e.g for use in a SLA). The metric
needs to be wel defined:

� When measuring starts (e.g when to measure latency from)

� Where measuring is done (is server response time measured on server, on a client, under what conditions?)

Imperials Example Question 1.3.1

Provide some example of metrics regarding a database.

Latency Measuring time to query, planning time, the whole systems response time
over a network.

Throughput Measure the maximum request/second possible (often used to compare web-
servers)

Memory Usage measurable, but must be careful (e.g os interaction)
Scalability Can define a metric regarding how quickly some metric (e.g throughput)

increases with scale (e.g instances of a distributed system)

It is also important to define when a requirement is satisfied.

� Setting an optimisation budget (e.g in developer hours)

� Setting a target or threshold (e.g x% over baseline implementation)

� Combination of both

4



1.3.2 Quality of Service (QoS) Objectives

Quality of Service Objectives Definition 1.3.1

A set of statistical properties of a metric that must hold for a system.

� Can include preconditions (e.g to define the environment/setup)

� Can be in conflict with functional requirements (e.g framerate vs realism in graphics)

Game On Example Question 1.3.2

Give an example of a basic QoS Objective for a game’s framerate.

The game’s framerate will be on average (over . . . preconditions . . . ) 60fps if run on a GPU rated at 50GFlops
or higher.

1.3.3 Service Level Agreements

Service Level Agreements (SLAs) Definition 1.3.2

Legal contracts specifying QoS objectives and penalties for violation.

� Non-functional requirements (not about system correctness)

� Can be legally enforced

Amazon Extra Fun! 1.3.1

AmazonWeb Services (AWS) provides a set of service level agreements relating to performance and availability.
Violations are resolved by providing customers with service credits. Amazon SLAs

When defining requirements for an SLA:

Specific State exact acceptance criteria (numerical terms).
Measurable Ensure the metrics used can actually be measured.
Acceptable Requirements should be rigorous such that meeting them is a meaningful success.
Realisable Counter to Acceptable - need to be lenient enough to allow implementation.
Thorough All necessary aspects of the system are specified.

1.4 Performance Evaluation Techniques

1.4.1 Measuring

� Performed on the actual system (can be prototype or production/final).

� Can be difficult and costly (need to mitigate any impact of the measuring system on the system itself).

� As it is on the actual system, it can (if done properly) yield accurate results.

The two main types of measurement are:

Monitoring Definition 1.4.1

Measuring in production to get real usage perfor-
mance metrics.

� Observe the system in its production envi-
ronment

� Collect usage statistics and analyse data
(e.g user’s preferred query types/structure,
schema designs for databases)

� Can monitor for and report SLA violations.

Benchmarking Definition 1.4.2

Measuring system performance in a controlled set-
ting (e.g lab).

� The system to set into a predefined (or
steady/hot) state

� Perform some workload while measuring per-
formance metrics.

5
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Benchmarking requires representative workloads in order to get metrics likely to be representative of a production
environment.

Batch Workload Definition 1.4.3

Program has access to entire batch at start of the benchmark.

� Useful when a throughput metric is being measured

� Simple to generate, and can even be recorded from a production environment.

Interactive Workload Definition 1.4.4

A program generates requests to pass to the system being benchmarked.

� Useful when a latency metric is being measured.

� Workload generator needs to fast enough to saturate system being benchmarked.

� Often more representative of a production environment (e.g an operating system receives a workload
over time)

Hybrid Definition 1.4.5

A common setup combining batch and interactive workload strategies (e.g sample random queries from a
predefined work set).

In order to get useful results from which

1.5 Optimisation Loop

New  
Feature

Evaluate 
Performance

yes

noPerformance 
Sufficient?

done

Identify 
Optimisation 
Opportunity

yes

no

Opportunities 
Available

Redesign

Optimise

Performance Parameters Definition 1.5.1

System and workload characteristics that affect performance.

System Parameters Do not change as the system runs (instruction costs, caches)
Workload Parameters Change as he system runs (available memory, users)
Numeric Parameters Quantitative (e.g CPU frequency, available memory, number of user)
Nominal Parameters Qualitative parameters (Runs on battery, has a GPU, runs in a VM)

The term resource Parameters/Resources refers to the parameters of the underlying platform (e.g
CPU, memory).
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Utilisation Definition 1.5.2

The proportion of a resource used by a to perform
a service by a system.

� A service has limited resources available (e.g
CPU time, memory capacity, network band-
width etc)

� Total available resources/resource budget
available to a service is a parameter

Bottleneck Definition 1.5.3

The resource with the highest utilisation.

� The limiting factor in performance of a sys-
tem

� given some resource x is the bottleneck, the
system is x-bound (e.g CPU-bound).

� Not always a resource, and performance may
be bottlenecked by some other factor (e.g
latency-bound→ the system is dominated by
waiting for some operation)

It is typically infeasible to identify all bottlenecks for an entire complex software system.
To limit optimisation complexity efforts should be restricted to optimising code paths that have particularly large

effect on performance.

Critical Path Definition 1.5.4

The sequence of activities which contribute the
larges overall duration.

Hot Path Definition 1.5.5

A code path where most of the execution time is
spent (e.g very commonly executed subroutine)

In order to optimise we require:

� Ability to quickly compare alternative designs

� Ability to select a near optimal value for platform parameters

While workload parameters are not typically controllable at this stage, some system parameters are.

Parameter Tuning Definition 1.5.6

Finding the vector within the parameter space that minimises resource usage, or maximises performance.

� Exploring the parameter space is expensive (even with non-linear optimisation)

� Analytical models can be used to accelerate search.

� Tuning needs to consider tradeoffs (e.g much of a cheap resource versus little of an expensive one)

Analytical Performance Model Definition 1.5.7

A model describing the relationship between system parameters and performance metrics.

� Having an accurate analytical model for the system is analogous to understanding the performance of
the system.

� Models can be stateless (e.g an equation) or stateful (e.g using markov chains).

� Need to model dynamic systems with (ideally small) static models.

� Very fast (faster than search parameter space)

� Allow for what-if analysis of system and workload parameters.

Simulation Definition 1.5.8

A single observed run of a stateful model

� Can see all interactions within the system in perfect detail

� Extremely expensive to run (limiting number of simulations and the speed of the optimisation workflow)

� Much more rarely used than other techniques described
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Chapter 2

Profiling

Event Definition 2.0.1

A change in the state of the system.

� Usually some granularity limit is used (e.g clock tick)

� Optionally has a payload (properties describing the event - e.g cache line evicted → the addresses &
data evicted)

� Has an accuracy - degree to which the event represents reality (many events are numeric & come with
measurement related error)

Simple/Atomic Event Executed instruction, clock tick, function called
Complex Event Cache line evicted, ROB flush due to misspeculation

Event sources have two components:

Generator Observes changes to system state (online → part of the runtime system)
Consumer Processes events and converts into meaningful insights (offline or online)

The overhead associated with collecting events can be very high.

Pertubation Definition 2.0.2

The effect of analysis on the performance of a system.

� If it is constant/deterministic we can subtract it from measurement to get an accurate result.

� Non-deterministic pertubation negatively affects accuracy as it cannot separate analysis overhead from
measured performance

Stacking up! Example Question 2.0.1

Instrumentation is added to a program to inspect its stack at regular intervals, and record the stack trace.
Assuming it is implemented to ensure the time spent traversing the trace is deterministic and can be removed
from any results, why may this instrumentation still result in non-deterministic pertubation?

Data Cache Side Effects
The instrumentation may bring deep parts of the stack (shallow is hot and likely cached) into cache, evicting
other lines. Hence the tracing pollutes the cache and results in more misses & hence more memory related
stalls for the program.

We could also more weakly argue about instruction cache limitations, or potential for associativity
conflicts occurring may have been avoided by design in the original program, but due to placement of
instrumentation’s static data & text have their positions moved.
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Fidelity Definition 2.0.3

The level of granularity with which events are recorded.

� Perfect fidelity means every event is recorded.

� Lower fidelity generally means less overhead.

Trace Definition 2.0.4

A complete log of the system’s state (and hence changes in state/events) for some time period.

� Events usually totally ordered (exceptions being with parallelism - i.e multicore systems)

� Accuracy is inherited from events (e.g accuracy of clock, hardware counters etc)

� Analysing traces is time consuming (solution: Profiling)

Events may be aggregated to reduce the logging overhead.

2.0.1 Call Stack Tracing

A common trace is to capture and inspect the stack of a thread.

� Stack frame layout must conform to a convention that stores frame pointers and return addresses on the stack.

� Debug symbols included in the binary (e.g part of the ELF spec) can be used to convert return addresses
scraped from the stack into symbols from the source code (function names).

� The stack may not easily represent the call structure of a program (inlining, tail call elimination, constant
evaluation and propagation)

2.1 Sampling

Rather than recording all events, we can reduce overhead by sampling some events.

Performance Fidelity traded against pertubation for reduced overhead in recording events.
Less Pertubation Fewer interactions with program → less effect on performance → less pertubation.

Imperfect May skip sampling some events (e.g very small functions), but more expensive functions
are more likely to be sampled, and we generally care about these more.
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2.1.1 Time-Base Intervals

We can make use of hardware supported timer interrupts to set timers before using an interrupt to trap and allow
the sampler to take control.

� Can use CPU reference cycles as a proxy metric to time

� Hardware clocks are often poorly defined & vary (i.e variable clock frequencies in modern CPUs, synchronisation
of clocks between CPUs)

� Easily available & easy to interpret (ticks ∝ time)

2.1.2 Event-Base Intervals

A generalisation of time-based intervals (as a clock tick → time is an event)

� Can define in terms of occurrences of an event (e.g function call)

� Depending on design, can be accurate / low noise

� Can be tricky to interpret as a link to some measure proportional to time is needed (typically we care about
execution time)

Quantisation Errors Definition 2.1.1

The resolution of an interval is limited (e.g by clock), but time is continuous. Mapping events to a discrete
measure of time can introduce errors & bias (costs may be attributed to the wrong time & hence wrong state).

2.1.3 Indirect Tracing

Indirect Tracing Definition 2.1.2

We can sample from parts of a program, and infer traces from the structure of the program.

For example control flow instructions dominate non-control flow instructions, we could sample from
control flow instructions, and then infer event between (non-control flow instructions) (called basic block
counting), effectively indirectly tracing them.

� Can be used to reduce overhead from tracing

� fidelity and accuracy good (depending on the events traced and the indirection used)

Profile Definition 2.1.3

A (usually graphical) representation of information relating to the characteristics of a system in terms of
resources (quantified) used in certain states.

� An aggregate over a specific metric (e.g a global aggregate if total cache misses, or per event such as
cycles per instruction, or cache misses per function)

� Information is lost in aggregation

� Aggregation has lower overhead than recording all events, so can reduce pertubation
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Flame Graph Definition 2.1.4

2.2 Recording Events

Instrumentation Definition 2.2.1

Adding event logging code to a program.

Easily Applicable No need to extra hardware or OS support.
Flexible Can implement any kind of logging required.

High Overhead
Perturbation As part of the program can effect performance

2.2.1 Manual Instrumentation

Logging using a library (e.g printf logging)

Fine control Programmer can easily specify exactly where to log what.
Supportless No need for compiler or hardware support.

High Overhead
Disable Need to disable for release builds (recompile without any logging)

2.2.2 Automatic Instrumentation

Compiler supported injection of event recording code into a program.

� Can be done at source level, or within some intermediate form (e.g injecting into some bytecode)

� Can potentially reduce overhead compared with manual instrumentation (compiler instruments at a lower level
representation)

2.2.3 Binary Instrumentation

Instrumenting an already compiled binary.

11



Static Adding instrumentation directly, overhead can be assessed from the binary.
Dynamic Adding instrumentation at runtime (works well with JiT)

2.2.4 Kernel Counters/ Software Performance Counters

The kernel already has the tools required to collect many kinds of events. These tend to be higher-level OS interac-
tions, rather than microarchitectural events. For example:

� Network packets sent

� Virtual memory events (e.g page faults)

� Context Switches

� Threads spawned

2.2.5 Emulation

2.2.6 Hardware Counters

Special registers configured to count low-level events as well as intervals (e.g cycles)

� Fixed number can be active at runtime

� Often buggy / unmaintained / inaccurate (and poorly documented) → only the most popular counters are
trustworthy

2.3 Perf

UNFINISHED!!!
RTFM Extra Fun! 2.3.1

Intel 64 and IA-32 Architectures Optimization Reference Manual.

� Microarchitectural features documented.

� Written as an optimisation guide.

� Code example can be found in its github repo

2.4 Microarchitectural bottleneck analysis

Advanced Computer Architecture Extra Fun! 2.4.1

A basic understanding of computer architecture is reuired (pipelining, in order, caches, out of order,
speculation).

The 60001 - Advanced Computer Architecture module by Prof Paul Kelly covers this in great depth.
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See Intel’s V-Tune performance metrics definitions for more

2.5 Vtune

UNFINISHED!!!
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Chapter 3

Modelling

3.1 Motivation

System Model Definition 3.1.1

A model used to characterise the performance of a system. Used to estimate performance without the overhead
of running the system.

During this course we make several simplifying assumptions:

� Input Data from a Known Distribution
Typically uniform. We avoid complications form correlated inputs.

� No System Noise Noise caused by the operating system (scheduling, other processes actions) and other
factors.

� Single Threaded & Deterministic Code Modelling parallel systems requires considering contention and is
an open area of research.

3.2 Numerical Models

Numerical Model Definition 3.2.1

Empirical measurement of the observed behaviour of the system.

� Describes actual system behaviour (is a measurement)

� Prediction limited → depends on the human interpretation of the data.

Easy To Create As long as the system is available to run benchmarks on.
True It is an empirical measurement of the actual system (or some component of it).

Easy to Interpret We can easily see how performance metrics vary with a given parameter.

14



Poor Generalisation We cannot easily apply measurements to new values for parameters (mainly
descriptive model / poor prediction)

Costly For a large number of parameters, high fidelity a large amount of data is
required, and hence many runs of benchmarks.

Limited Prediction We can infer predictions from measurement, but it is difficult to extrapolate
with confidence.

Microbenchmark Definition 3.2.2

Small programs designed to test a specific portion of a system.

Numerical Models are constructed by:

1. Data (performance metrics) gathered through microbenchmarks on a range of parameter values.

2. Data is analysed/interpreted.

3.3 Analytical Models

Analytical Model Definition 3.3.1

A formalised relationship between system parameters and performance metrics.

� Hard to interpret (limited descriptive use)

� Evaluating the model (given parameters) predicts performance metrics

� A detailed understanding of the system is required

� Model must be validated using experimental data

Models can even be used inside the system itself. For example using an analytical model to determine which
optimiser to use for a query plan

Example Models Extra Fun! 3.3.1

An example of a cost model for an R-Tree can be found in Cost models for join queries in spatial databases.

The Picasso Database Query Optimizer Visualizer another example of analytical models being used in
the context of databases.

3.3.1 Empirical to Analytical

We fit an analytical model via regression on data from a numerical model.

Benchmark

For example we could benchmark the memory system of a machine:

#include <stdint.h>

#include <stddef.h>

extern int32_t* input_data; // An array of data

extern size_t N; // A large constant

extern size_t size; // Parameter: size of the region accessed

void benchmark() {

volatile int32_t sum = 0;

for (size_t i = 0; i < N; i++)

// mod is used (expensive), to reduce use size power of 2 and a bitmask

sum += input_data[i % size];

}
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System Parameters

B0 Size of a General Purpose Register of the CPU
B1 Size of a cache line of the Level 1 cache
B2 Size of a cache line of the Level 2 cache
B3 Size of a Memory Page
l0 Access Latency of the Level 1 Cache
l1 Access Latency of the Level 2 Cache
l2 Access Latency of the main memory
l3 Lookup time in the Page Table
C0 Capacity of a General Purpose Register of the CPU
C1 Capacity of the Level 1 Cache
C2 Capacity of the Level 2 Cache
C3 Number of Memory Pages in the TLB × Page size

Model

Given s is the stride parameter in the characteristic equations:

TMem =

3∑
i=0

li ×min

(
1,

s

Bi

)
or we could model as TMem =


l0 s < C1

l0 + l1 s < C2

l0 + l1 + l2 s < C3

l0 + l1 + l2 + l3 otherwise

We can compare the effects of altering system parameters on both models.

Fitting

Some parameters can be taken from documentation, others may be derived from experiment.

Ideally the model should automatically self-tune to set parameters. Automating the tuning process has several
advantages:

� Less work required by humans.

� Can adapt to changing conditions (e.g if cache size is artificially reduced by contention for shared cache my
many threads)

� Can scale forward (if CPU is updated to newer generation, model can be re-tuned to fit changed system
parameters)

3.4 Memory Access Patterns

3.4.1 Memory Region

The number of words skipped over between each access is R.w − u
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3.4.2 Sequential

Given some block size we can estimate the number of misses with a simple model.

� Assume a cold start (no part of the region in cache already)

� Assume accesses are within blocks, not over boundaries (e.g if u > 1 and went over the edge of a cache line)

� s trav means sequential traversal

Ms
i (s trav) =


∥R∥
Bi

R.w − u < Bi

R.n×

⌈
u

Bi

⌉
R.w − u ≥ Bi

We may want to consider additional misses due to misalignment (u stretching over two Bs), in which case we much
change the R.w − u ≥ Bi case to:

Ms
i (s trav) = R.n×

(⌈
u

Bi

⌉
+

(u− 1) mod Bi

Bi

)

3.4.3 Repetitive Random Access

Ms
i (rr acc) = undefined in lecture

Randomly access r locations (can repeat accesses)
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3.4.4 Random Traversal

Ms
i (r trav) = undefined in lecture

Access all R.n locations in some random order.

3.4.5 Modelling Complex Patterns

P1 ⊕ P2 Sequential execution of patterns P1 then P2.
P1 ⊙ P2 Concurrent execution (access patterns interleaved).

We can hence combine access patterns.

Random Arrays Example Question 3.4.1

Create an access pattern description for the following program. List any other assumptions.

#include <stdint.h>

#include <stddef.h>

extern int32_t input_data_1[i]; // uniform random data (used for index)

extern int32_t input_data_2[j]; // random data

extern size_t N; // A large constant

void benchmark() {

int32_t sum = 0;

for (size_t i = 0; i < N; i++)

sum += input_data_2[input_data_1[i]];

}

We assume that N = i and all entries of input_data_1 x are such that 0 ≤ x ≤ i (otherwise array accesses
can be out of bounds)

s trav(R.w = 1, u = 1, R.n = i)⊙ rr acc(R.w = 1, u = 1, R.n = j, r = i)

More complex access patterns can be modelled.

s trav(. . . )⊙ r trav(. . . )︸ ︷︷ ︸
Hash Join Build

⊕

s trav(. . . )
Read Input

⊙ rr acc(. . . )
Access Hashtable

⊙ s trav(. . . )
Write Output︸ ︷︷ ︸

Hash Join Build


3.5 Modelling State

Analytical models are stateless, but most systems have some kind of dynamic state that can influence behaviour and
performance.

Stochastic models can be used to encode state (combine analytical models and dynamic state).

18



Discrete Time Markov Chains (DTMC) Definition 3.5.1

A stochastic model describing a sequence (discrete time steps) of possible states.

� Much like a probabilistic finite state machine → the next state is only dependent on the previous (and
random variables for transition) (called the markov property).

� Transition probabilities out of a state must sum to 1

� Can be represented as a matrix (directed graph represented as an adjacency matrix)

3.5.1 Simple Branch Direction Prediction

Consider a simple conditional branch, to a known target (instruction). For example a basic loop:

int N = 42;

void a() {

int i = 0;

while (i < N) {

i++;

}

}

Compiled for x86 with -O1 (godbolt) we get the following:

a:

; Load N to edx and determine if any loop iteration should run (N may be 0)

mov edx, DWORD PTR N[rip]

test edx, edx

; Start looping

jle .L1 ; [Conditional branch, known target]

mov eax, 0 ; int i = 0

.L3:

add eax, 1 ; i++

cmp eax, edx ; Check that i < N by checking if i == N yet

jne .L3 ; [Conditional branch, known target]

.L1:

ret ; [Conditional branch, unknown target -> target prediction with RAS]

N:

.long 42
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We will focus on the conditional branches with a known target (target prediction is more complex).

There are several ways to reduce potential penalty from branch instructions:

� Smaller frontend (reduce cycles between fetch and branch determination).

� Early branch resolution.

� Branch delay slot (branch does not take affect until n instructions after) (used in MIPS).

� Branch prediction.

A simple branch prediction scheme is to use a 2-bit branch history table, the result of branch resolution for a
given branch instruction changes the state in the table, this state is used to predict other execution of branches at
that instruction. We can represent the branch predictor state for a given instruction by a finite state machine.

Hence we can also model the branch predictor state as a markov chain.

Stationary Distribution Definition 3.5.2

A probability distribution for a specific markov chain that remains the same (stationary) as time progresses.

Given the transition matrix P of a chain, the stationary distribution can be represented by a vector
of probabilities for being in any given state π∞ such that:

Pπ∞ = π∞

Hence π∞ is an eigenvector of P with associated eigenvalue 1.

� It describes the probability of being in each state after infinite steps.

Actual Takeness
Taken Not Taken

Prediction
Taken Correct Mispredict

Not Taken Mispredict Correct

P (Mispredict) = P (Predict Taken)× P (Actually Not Taken) + P (Predict Not Taken)× P (Actually Taken)
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3.6 Modelling an Entire System

Modelling an entire system is typically infeasible (scale and noise). Instead specific components and paths can be
modelled.

1. Identify code that matters for performance using a profiler (Hot code sections, called bottlenecks in vtune)

2. Re-create behaviour in a controlled environment (microbenchmarking)

3. Create an analytical model of the code path/component.

4. Validate the model with experimental results.
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Chapter 4

Efficient Code

4.1 Motivation

4.2 CPU Efficiency

CPU Bound Definition 4.2.1

UNFINISHED!!!

Control Hazard Definition 4.2.2

UNFINISHED!!!

Structural Hazard Definition 4.2.3

UNFINISHED!!!

Data Hazard Definition 4.2.4

UNFINISHED!!!
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Chapter 5

Parallelism

5.1 Motivation

Denbard/MOSFET Scaling Definition 5.1.1

A scaling/power law stating that as transistors get smaller:

� Power density is constant, hence power ∝ area.

� Voltage and current decrease with transistor length.

Hence as transistor size decreases they become faster, more energy efficient and cheaper.

� Part of a paper (1974) on MOSFETs (metal-oxide-semiconductor field-effect transistors) co-authored
by Robert Dennard

� Scaling becomes limited by transistor leakage, which grows as a proportion of power consumed by the
transistor as scale is decreased.

� Leakage converts to heat which must be dissipated to prevent damage to the chip. This presents a
limiting factor on scaling.

Slow end of Dennard scaling limit single threaded performance improvements ⇒ Increase parallelism to attain higher
performance.

Ambdahl’s Law Definition 5.1.2

Where S is speedup, and each pi, si is the speedup for a proportion of the program.

S =

(
p1

s1
+

p2

s2
+ · · ·+

pn

sn

)−1

We can simplify this for the basic case of proportion p of a program perfectly parallelised over n threads:

S =
1

(1− p) +
p

n
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5.1.1 Types of Parallelism

Data-Level Parallelism Definition 5.1.3

Increasing throughput by operating on multiple elements of data in parallel.

Typically this in the form of Single-Instruction Multiple-Data (SIMD) instruction-set extension (in-
structions that operate a single simple instruction on several (typically adjacent) data elements.

Some such extensions include:

MMX An early SIMD instruction set extension for IA32 developed by Intel for the Pentium P5 microar-
chitecture (1997), only supports integer arithmetic.

SSE (Streaming SIMD Extensions) developed by Intel that support floating point arithmetic.
AVX (Advanced Vector Extensions) developed by Intel and AMD for x86-64 (Sandy bridge & AMD

Bulldozer IN 2011).

Another form is Single-Instruction Multiple-Threads (SIMT) where each thread operates on some data,
and many threads execute the same instructions in lockstep. This is the programming model used by most
GPUs (e.g see Nvidia’s CUDA).

Instruction Level Parallelism Definition 5.1.4

Systems where multiple instructions can be executed in the same step (e.g instructions per cycle > 1). Many
techniques are used to achieve this:

Pipelining Allows higher throughput by splitting an instruction pipeline into stages that can be
executed in parallel.

VLIW & EPIC (Very-Long Instruction Word & Explicitly Parallel Instruction Computing) architec-
tures where instructions contain bundles of operations and explicitly determine which
operations can be run in parallel (e.g Intel’s Itanium/IA64). It is a way for statically
scheduled processors to take advantage of ILP, but is not common.

Superscalar Dynamically scheduled processors that can inspect instruction dependencies at runtime
in order to dispatch fetched instructions for execution out-of-order and in parallel. Many
other techniques can be used here such as speculative execution and register renaming.

Nearly all modern processors are pipelined & superscalar.

Flynn’s Taxonomy Extra Fun! 5.1.1

A classification scheme for computer architectures that neatly describes the type of parallelism they use (see
wikipedia here).

Task-Level Parallelism Definition 5.1.5

Splitting an algorithm into sections that can be run in parallel.

� Parallelism must be extracted by the programmer.

� Tasks run in separate processes or threads, potentially on different cores, or processors.

� Each task being run in parallel can be different (different instructions and either different data or shared
data accessed)

Crazy Fast IPC Extra Fun! 5.1.2

The L4 microkernel implements short IPC where a sending process places the message in registers, and a
fast context switch to the receiving thread without clearing registers (explained here).

The L4ka project at Karlsruher University’s Operating Systems group has an Itanium implementation
that takes advantage of this (and Itanium specifics → lots of registers) to complete short IPC in as few as 36
cycles.
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5.1.2 Concurrency

Parallel Definition 5.1.6

”Decomposing a problem into smaller tasks exe-
cuted at the same time on different compute re-
sources”

Concurrent Definition 5.1.7

”Decomposing a problem into smaller tasks exe-
cuted during overlapping time periods”

C ¬P An OS scheduler interleaving the execution of two threads on a core.
C P Threads switching cores (OS scheduler typically tries to avoid this).

¬C P Two threads executed entirely on separate cores.

5.1.3 Cost Efficiency

What is it good for! Example Question 5.1.1

What are the main advantages of parallelism?

� Better performance through parallelism

� Better cost-efficiency (can share RAW, disk, network cards between several cores, rather than needing
separate machines)

Much of this is workload and algorithm specific → a user needs to analyze their specific use case to determine
the appropriate hardware.

Datacenters optimise for total cost of ownership:

� Entire hardware lifecycle (purchase, expected maintenance, mean time-to-failure).

� Energy consumption & cooling requirements.

� land, building & even security costs.

� Existing hardware compatibility.

CPU provisioning Example Question 5.1.2

Given the following specifications:

� 1 Gbps network

� Requests are 1KB

� Each requet takes 50µs to process

230︸︷︷︸
1 Gbps Network

÷ 23︸︷︷︸
8 bits=1 byte

÷ 210︸︷︷︸
1 KB request

= 217 requests per second

Each core can process a request in 50µs so:

(50× 10−6)−1 = (5× 10−5)−1 = 2× 104 requests per second
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Hence to saturate the flow of incoming requests:

cores =

⌈
requests/sec

requests/sec/core

⌉
=

⌈
217

2× 104

⌉
≈ ⌈6.5⌉ = 7

5.1.4 Critical Path Analysis

Critical Path Definition 5.1.8

A sequence of tasks determining the minimum time for an operation.

� The profiler is unaware of the critical path across threads (open area of research)

� Optimising outside of the critical path will often not improve time.

5.2 Cache Coherency

CPUs contain multiple levels of data caches (L1, L2, L3/LLC) which need to be coherent (same cached location ⇒
same value).

A cache coherency protocol determines how a CPU achieves this. Typically each cache line has some state, with the
protocol determining how and when cache lines transition state depending on issues reads and writes.

MSI is a simple cache coherency algorithm.

UNFINISHED!!!
In order to add support for atomics and additional Locked state is included

5.3 Atomics

Atomic read, modify and write operations require hardware support and are exposed to programmers through
compiler supported libraries (e.g stdatomic for C11, C++ atomic and Rust std::sync::atomic).

Lock Prefix Extra Fun! 5.3.1

The IA32 & x86-64 support a lock prefix for some instructions to specify they should be run atomically.
#include <stdatomic.h>

void example() {

int a = 1;

int b = 4;

int temp = 3;

atomic_compare_exchange_strong(&a, &b, temp);

return;

}

example:

mov DWORD PTR [rsp-4], 1

mov eax, 4

mov edx, 3

lock cmpxchg DWORD PTR [rsp-4], edx

ret
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Atomic methods often allow the programmer to specify the memory order (order of memory accesses around the
atomic access).

enum class memory_order : /* unspecified */ {

relaxed, // relaxed ordering - no guarantee on ordering

consume, // release-consume ordering

acquire, // release-acquire ordering

release, // release-acquire and release-consume ordering

acq_rel, // both release and acquire

seq_cst // sequentially consistent ordering

};

These orders are well-documented here on cppreference.

5.4 Synchronisation

5.4.1 Synchronisation Primitives

Mutex/Lock Definition 5.4.1

Can only be held by one thread, blocks otherwise.
Single thread in critical region.

std::mutex

Shared Mutex/RW Lock Definition 5.4.2

A mutex with a shared and exclusive lock. Allows
any number of readers or single writer into a crit-
ical region.

std::shared_mutex

Semaphore Definition 5.4.3

Can be incremented/decremented, waits until
value is > 0. Allows n threads into a critical re-
gion.

std::counting_semaphore

std::binary_semaphore

Condition Variable Definition 5.4.4

Set threads to wait until a condition is signalled as
true (can use predicates, or have threads signal to
wake up n waiting threads).

std::condition_variable

Barrier Definition 5.4.5

Forces n threads reaching the barrier to wait, until n have arrived, at which point all are unblocked.

std::barrier

5.4.2 Lock Implementation

User-Space

Must make use of atomics to create spinlocks.

� Basic locks just use CAS to wait on a flag.

� Intrinstics such as _mm_pause() can be used to wait efficiently (produces no-ops)

� Backoff (fixed & exponential) can be used to decrease contention in access to the lock’s flag.

� Other spinlock types such as ticket locks can add guarantees in order of acquisition by threads.

No Kernel No kernel involvement means potentially less overhead when contention is low.
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Spinning Waiting threads consume valuable CPU resources while spinning. This can become a
severe issue if the spinning thread has higher priority than the thread holding the lock.

Starvation For a basic thread implementation there is no ordering on acquisition, so a thread may
be constantly skipped/other threads that more recently attempted acquire the lock.
(Note: ticket locks guarantee this ordering)

Kernel Level Lock

Lock and unlock via a syscall, with logic implemented in kernel space. If a thread cannot acquire the lock, thens
schedule another thread.

� Can implement same CAS based acquisition attempt within the kernel (multiple threads on multiple cores may
be servicing a syscall simultaneously)

� In systems with a single hardware thread, mutual exclusion within the kernel can be achieved by disabling
interrupts (e.g as in Pintos, not possible on modern systems)

Fairness Can keep a queue of blocked/waiting threads and wake them in order.

Expensive If the lock is released/available, then acquisition has the additional overhead of a syscall
when compared to a user level implementation.

Hybrid Level Lock

A user level lock that bails out to a kernel level list of blocked waiters when contention is high.

� Most popular implementation is the linux futex (fast userspace mutex ).

� pthread_mutex_lock uses a futex internally

Adaptable Can dynamically adapt to spin in userspace, or block from kernel based on contention
at runtime.

5.5 False Sharing

Cache coherency protocols store state per line. Multiple threads may not access shared data, but may access locations
in that map to the same cache lines and if any threads write the line may be continually invalidated.

� We can use hardware counters (e.g profiling with perf, using the HITM (hit modified) counter on x86-64 CPUs)
to find false sharing occuring.
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5.6 Distributing Work

We can implement some basic work distribution schemes using a Task.

struct Task {

virtual void run() = 0;

};

// We can make use of std::reference_wrapper to pass references to a polymorphic task type

using TaskRef = std::reference_wrapper<Task>;

using TaskQueue = std::vector<TaskRef>;

� Virtual method allows for polymorphism in tasks

� Task can store state, and return values.

We will make use of some example tasks:
struct PrintTask : Task {

int id;

PrintTask(int id) : id(id) {

std::cout << "Created PrintTask: "

<< id

<< std::endl;

}

void run() override {

std::cout << "PrintTask: "

<< id

<< std::endl;

}

};

struct WaitTask : Task {

int id;

std::chrono::milliseconds wait_ms;

WaitTask(int id, int waitfor)

: id(id), wait_ms(waitfor) {

std::cout << "Created WaitTask: "

<< id

<< std::endl;

}

void run() override {

std::cout << "started WaitTask: "

<< id

<< std::endl;

std::this_thread::sleep_for(wait_ms);

std::cout << "Ended WaitTask: "

<< id

<< std::endl;

}

};
Runnable through a function for each work distribution:

int main() {

/* Can allocate tasks on stack, in a vector, etc */

PrintTask a(0); PrintTask b(1); PrintTask c(2); PrintTask d(3);

/* Create a task Queue to pass to method */

TaskQueue tasks{a, b, c, d};

auto start = std::chrono::steady_clock::now();

/* Run tasks (comment out all but one method) */

process_sequential (tasks);

process_on_demand (tasks);

process_fork_and_join(tasks);

process_dispatch (tasks);

process_jobsteal (tasks);

auto end = std::chrono::steady_clock::now();

/* Display time */

std::cout << "Time: " << (end - start).count() << std::endl;

}
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5.6.1 Sequential

void process_sequential(TaskQueue &tasks) {

for (auto &task : tasks) {

task.get().run();

}

}

Simple No reasoning about concurrency required, easy to implement & understand perfor-
mance.

Low Overhead No overhead for using synchronisation primitives, as required by concurrent schemes.

No Parallelism

5.6.2 On Demand

// Invariant: tasks' lifetime > threads (threads reference tasks)

void process_on_demand(TaskQueue &tasks) {

std::vector<std::thread> threads;

for (auto &task : tasks) {

std::thread([&]() { task.get().run(); }).detach();

}

}

Simple Each thread only accesses task once, all synchronisation after is part of the task.

Performance Spawning threads is expensive, and when there is a large number of threads (e.g when
os threads > hardware threads) scheduling and contention on locks protecting shared
data accessed by tasks reduce performance.

5.6.3 Fork & Join

For each batch of tasks, spawn new threads.

void process_fork_and_join(TaskQueue &tasks) {

std::vector<std::thread> threads;

for (auto &task : tasks) {

threads.emplace_back(std::thread([&]() { task.get().run(); }));

}

for (auto &thread : threads) {

thread.join();

}

}

OpenMP Extra Fun! 5.6.1

OpenMP is a set of standards for adding high-level parallelism directives into multiple languages (Fortran, C
and C++). OpenMP references

#pragma omp for

for ( /* ... */ ) {

/* block executed in parallel with other iterations */

}
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5.6.4 Work Dispatching

Each worker has its own queue, tasks are dispatched to each queue.

� Queue is accessed by a main thread and a single worker

� Fixed number of workers

struct WorkerQueue {

WorkerQueue() : finish_(false), worker_([&]() {

while (!finish_.load()) {

auto task = get_task();

if (task.has_value()) task.value().get().run();

}

}) {}

void add_task(TaskRef task) {

const std::lock_guard<std::mutex> lock(tasks_mutex_);

tasks_.push_front(task);

}

std::optional<TaskRef> get_task() {

const std::lock_guard<std::mutex> lock(tasks_mutex_);

if (!tasks_.empty()) {

auto task = tasks_.back();

tasks_.pop_back();

return task;

} else { return {}; }

}

size_t size() const {

const std::lock_guard<std::mutex> lock(tasks_mutex_);

return tasks_.size();

}

void finish() {

finish_.store(true);

worker_.join();

}

private:

mutable std::mutex tasks_mutex_;

std::deque<TaskRef> tasks_;

std::atomic<bool> finish_;

std::thread worker_;

};

We can then create a pool of WorkerQueues and allocate tasks in a round-robin scheme.

template <size_t THREADS> struct WorkerPool {

WorkerPool() : task_number_(0) {}

void push_task(TaskRef task) {

size_t index = task_number_.fetch_add(1) % THREADS;

queues_[index].add_task(task);

}

void finish() {

for (auto &q : queues_)

q.finish();

}

private:
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std::array<WorkerQueue, THREADS> queues_;

std::atomic<size_t> task_number_;

};

void process_dispatch(TaskQueue &tasks) {

WorkerPool<5> workerPool;

for (auto t : tasks) {

workerPool.push_task(t);

}

workerPool.finish();

}

Improve these examples! Extra Fun! 5.6.2

These examples have threads spin until a job is found, to improve efficiency we could suspend threads while
no tasks are present.

� Could use a semaphore (#include <semaphore> from C++20 (only available in newer versions of
GCC)).

� Need to ensure that suspended threads are still ended when WorkerQueue::finish is called.

� Could use a condition variable to implement producer-consumer pattern with finish.

Contention Each thread has its own queue, and hence can only contend for access with the thread-
/threads adding to the queue, not other workers.

Consumer Balancing Some threads may finish jobs quickly and idle, while others are still com-
pleting work, but the tasks may still be allocated to busy threads.

5.6.5 Work Stealing

Many threads contend to take tasks from a queue.

template <size_t THREADS> struct TaskPool {

TaskPool() : finish_(false) {

for (auto &t : threads_)

t = std::thread([&]() {

while (!finish_.load()) {

tasks_mutex_.lock();

if (!tasks_.empty()) {

TaskRef task = tasks_.back();

tasks_.pop_back();

tasks_mutex_.unlock();

task.get().run();

} else {

tasks_mutex_.unlock();

}

}

});

}

void submit_task(TaskRef task) {

const std::lock_guard<std::mutex> lock(tasks_mutex_);

tasks_.push_front(task);

}

size_t size() const {

const std::lock_guard<std::mutex> lock(tasks_mutex_);

return tasks_.size();
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}

void finish() {

finish_.store(true);

for (auto &t : threads_)

t.join();

}

private:

std::mutex tasks_mutex_;

std::deque<TaskRef> tasks_;

std::array<std::thread, THREADS> threads_;

std::atomic<bool> finish_;

};

void process_jobsteal(TaskQueue &tasks) {

TaskPool<5> taskpool;

for (auto t : tasks) {

taskpool.submit_task(t);

}

taskpool.finish();

}

Consumer Balancing Tasks are stolen by idle threads, busy threads are not overloaded with tasks.

Contention All threads waiting for new jobs contend for access to the same queue.

5.6.6 Streaming

Rather than executing tasks in parallel, execute each stage of a task in a pipeline.

� Data needs to be communicated between threads (shared memory between cores)

� Temporary data for each stage is not shared.

I-Cache Locality Running the same code many times for better temporal locality in instruction cache.

33



D-Cache Locality Data must be input and output from stages. Hence we necessarily get slower initial
access times due to sharing data & cache coherency protocol.

Pipeline Woes Get common issues related to unbalanced pipeline stages/pipeline fragmentation.
Flexibility If the number of tasks increases of decreases, we cannot just spawn or remove a thread

(as with work stealing, dispatch etc), we need to add/remove an entire pipeline.

Staged Event Diven Architecture (SEDA) Definition 5.6.1

A combination of streaming and worker-pool based systems.

� Each stage has an input queue, as well as its own thread pool.

� When a bottleneck occurs (e.g a queue becomes full) a stage can make a decision (e.g drop a request)

� Flexible/can react to load (i.e stages can spawn or remove threads from their pools)

� Queues mean stages can be inspected to see contents & size to optimise for load.

The paper behind SEDA provides a webserver example:

5.7 Allocators

A single global allocator is a source of contention in a multithreaded system.

� Use a cache of blocks per-thread, this cache can be accessed without contention.

� Does global allocation & free in batches.

5.8 Multiprocessing

Multiprocessing Definition 5.8.1

A process can contain several threads (multi threading). Multiprocessing involves using multiple processes.

� Synchronisation achieved with structures shared between processes (e.g a futex can be shared between
processes)

� There is no shared memory by default (shared pages can be used to allow shared memory between
processes), hence processes cannot interfere/are separated

� Communication between processes is explicit and expensive (requires a syscall)

Processes can even be run on separate machines, and explicit communication implemented using a network
(e.g Apache Beam, Hadoop).

Multiprocessing is best used when a system executes independent tasks with simple, explicitly expressed commu-
nication.

� A common pattern is to assign processes to groups of independent tasks

� UNIX systems allow for easy multiprocessing through pipes (process1 | process2)
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5.8.1 Communication

Common interprocess-communication mechanisms include:

Explicit Shared Memory

Zero-Copy Just as with multithreading, large data can be communicated without copying.
No Syscalls Once shared memory is setup between processes, communication can occur entirely in

userspace.

No Interface There is no standard interface, operating systems (e.g Linux, Windows, Fuschia) have
their own shared-memory implementation and interface (syscalls).

Local-Only Requires the processes to run on the same machine.

Sockets

Uniform Interface Across operating systems, allowing the programmer to write without con-
sidering the system to deploy on, or even if the communicating processes
are on the same machine.

Copies Needs to copy communicated data, even if communication is machine-local.
Overhead Needs to use the provided network stack.

Pipes

Common Interface Supported by many unix-style operating systems, and used by many applications.

Copies Must copy communicated data to a buffer (producer-consumer pattern).
Local-Only Cannot distribute processes over multiple machines.

5.9 Programming Models

UNFINISHED!!!
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Chapter 6

Tools

6.1 Motivation

C++ is a very complex language, that combines:

� High level abstractions (templates, constructors & destructors (to RAII), macros, polymorphism from inheri-
tance/virtuals)

� Fine grained, manual control over memory (can use malloc, new, other allocators, in heap, or even on the
stack) and memory access (all the power of C’s pointer arithmetic)

� Undefined behaviour, to allow compilers leverage to optimise (e.g signed integer overflow is undefined in the
C++ standard, so that compilers can implement it based on the target architecture)

These provided abstractions are powerful, but can be difficult to check correctness for.

What about Rust? Extra Fun! 6.1.1

Rust was largely invented as an attempt to solve the correctness issues encountered by C++, without the
performance tradeoff made by many other languages with more memory safety (e.g swift, go).

The language is split into safe and unsafe, with necessarily unsafe (but high performance) code being
written in unsafe to provide safe abstractions. Safe rust has several advantages over C++:

� No undefined behaviour.

� Any program with data races cannot compile (ownership & borrow checker)

� Complete memory safety (no pointers, borrow checker)

� Sanitary macros (very powerful metaprogramming abstraction - comparable with languages such as
Scala)

� Traits and generics (much better error messages than with templates, C++ is attempting this with
concepts)

For unsafe rust sanitizer-like tools are available using MIRI.

Rust’s performance is comparable with C++.

6.2 Correctness

6.2.1 Patterns

Resource Aquisition is Initialisation (RAII) Definition 6.2.1

UNFINISHED!!!

6.2.2 Compiler Warnings

Compilers already provide a large number of warnings.

36

https://github.com/rust-lang/miri
https://programming-language-benchmarks.vercel.app/cpp-vs-rust


� GCC provided warnings

� Clang provided warnings

� Linters can also be used to catch code quality issues, that could potentially result in correctness issues in future
(hard to understand code leads to misunderstandings).

# Use all warnings and error on warnings (e.g to fail CI)

g++ ... -Wall -Werror ...

It is possible to enable and disable compiler warnings from the code.

// Selecting levels for -Wformat

#pragma GCC diagnostic warning "-Wformat"

#pragma GCC diagnostic error "-Wformat"

#pragma GCC diagnostic ignored "-Wformat

More can be found in GCC’s diagnostic pragmas documentation, they can also be specified as attributes (see attribute
specifiers).

6.2.3 Sanitisers

Sanitisers instrument code at compile time to detect errors at runtime.

� Typically take large performance reduction

� Known bugs are present in sanitisers (though these are typically very rare edge cases)

� GCC provides several that can be found here

Address Sanitizer (Asan) Definition 6.2.2

Detects out of bounds, use after free and other
memory access related bugs.

g++ ... -fsanitize=address

Undefined Behaviour Sanitizer (Ubsan)
Definition 6.2.3

Checks for a large number of undefined behaviours
in C++

g++ ... -fsanitize=undefined

Thread Sanitizer Definition 6.2.4

A data-race detector, uses a vector clock algorithm to detect data races at runtime.

g++ ... -fsanitize=thread

Malloc weirdness Example Question 6.2.1

Does the following code segfault? Use Asan to determine if the following code has any memory related bugs.

#include <stdlib.h>

#include <iostream>

int main() {

int* a = (int*) malloc(100);

a[-1] = 3;

std::cout << "here"<< std::endl;

}

g++ memory_example.cpp -o memory_example

./memory_example

# result of code

here

There is no segfault (this is due to how malloc chunks work as explained here), however we are accessing
outside the bounds of the memory allocated.
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When running with asan we see the warning:

g++ memory_example.cpp -o memory_example -fsanitize=address

./memory_example

# asan output

==1094==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60b0000000ec at ...

# The error originates in "main"

6.2.4 Valgrind

Valgrind provides tools to detect memory issues and data races.

Memcheck

valgrind --tool=memcheck program # place args on end

� Should include debugging symbols when compiling

� Much slower than sanitizers, but can take any binary.

� Memcheck documented here

Memcheck this! Example Question 6.2.2

Use Valgrind Memcheck to find the incorrect index in the previously checked program.

# include debug symbols

g++ memory_example.cpp -g -o memory_example

valgrind --tool=memcheck ./memory_example

# valgrind output:

==2375== Invalid write of size 4

==2375== at 0x1091EB: main (memory_example.cpp:6)

==2375== Address 0x4db2c7c is 4 bytes before a block of size 100 alloc'd

==2375== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/ ...

==2375== by 0x1091DE: main (memory_example.cpp:5)

Helgrind

valgrind --tool=helgrind program # place args on end

Data race detection using valgrind.

6.3 Performance

6.3.1 VTune

UNFINISHED!!!

6.3.2 Perf

UNFINISHED!!!

6.3.3 Coz

UNFINISHED!!!
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Chapter 7

System Interfaces

7.1 Operating System Interfaces

7.2 CPU Interfaces

7.3 Virtualization

7.4 I/O Interfaces

UNFINISHED!!!
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Chapter 8

Scale Out

8.1 Design Considerations

8.2 Microservices

8.3 Serverless

8.4 Function as a Service

FaaS Definition 8.4.1

8.5 Communication
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Chapter 9

Credit

Content

Based on the System Performance Engineering course taught by Dr Holger Pirk and Dr Luis Vilanova.

These notes were written by Oliver Killane.
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