
60023
Type Systems for
Programming Languages
Imperial College London

Contents

1 Introduction 3
1.1 Course Resources . 3

2 Lambda Calculus 4
2.1 Introduction to Lambda Calculus . 4
2.2 Reduction Strategies . 6

2.2.1 Head Reduction . 6
2.2.2 Call By Name / Lazy . 6
2.2.3 Call By Value . 6
2.2.4 Normal Order . 6
2.2.5 Applicative Order . 6
2.2.6 Computability . 7

2.3 Normal Forms . 7
2.4 Approximation Semantics . 9

2.4.1 Properties of Approximants . 10
2.5 Explicit Lambda Calculus . 10

3 Curry Type Assignment 12
3.0.1 Curry Type Assignment . 12
3.0.2 Important Lemmas For Type Assignment . 13

3.1 Principle Type Property . 13
3.1.1 Unification . 14
3.1.2 Curry Principle Pair . 14

4 Polymorphism 15
4.1 Language ΛN . 15
4.2 Type Assignment for ΛN . 16
4.3 Principal Types for ΛN . 16

5 Recursion 18
5.1 Language ΛNR . 18
5.2 Type Assignment for ΛNR . 18
5.3 Principle Types for ΛNR . 19

6 Milner’s ML 20
6.1 The ML Type Assignment System . 20

6.1.1 Term Substitution . 20
6.1.2 Reduction . 21
6.1.3 Type Assignment . 21
6.1.4 Lemmas for Type Assignment . 22

6.2 Milner’s W . 24
6.2.1 Basic Cases . 24
6.2.2 Let Construct . 25
6.2.3 Fix Construct . 25
6.2.4 Application . 25

6.3 Polymorphic Recursion . 25
6.3.1 Mycroft-Style Assignment for ΛNR . 26
6.3.2 Milner’s and Mycroft’s System’s Differences . 26

1

7 Pattern Matching 28
7.1 Syntax . 28
7.2 Reduction . 28
7.3 Type Assignment for TRS . 29

7.3.1 Principle Pair for a TRS term . 30
7.4 Subject Reduction . 30
7.5 Combinatory Logic . 30

7.5.1 Syntax . 31
7.5.2 Extending CL . 31
7.5.3 Type Assignment for CL . 31

8 Extensions to Type Systems 32
8.1 Data Structures . 32

8.1.1 Pairing . 32
8.1.2 Disjoint Unions . 32

8.2 Recursive Types . 33
8.2.1 Equi-recursive Approach . 33
8.2.2 Iso-recursive Approach . 34

8.3 Recursive Data Types . 34

9 Intersection Types 35
9.1 Type Assignment . 36
9.2 Subject Reduction and Normalisation . 36
9.3 Rank 2 and ML . 36
9.4 Approximation Results . 37
9.5 Characterisation of Head/Strong Normalisation . 37
9.6 Principle Intersection Pairs . 38

10 Credit 39

2

Chapter 1

Introduction

Dr Steffen van Bakel

1.1 Course Resources

The module website contains comprehensive notes.

3

https://www.doc.ic.ac.uk/~svb/TSfPL/

Chapter 2

Lambda Calculus

2.1 Introduction to Lambda Calculus

λ-Terms Definition 2.1.1

Given the set of term-variables V = {x, y, z, . . . }, a λ-term is defined by the grammar:

M,N ::= x
variable

| (λx.M)
abstraction

| (M N)
application

We can also describe this using an inference system:

x ∈ Λ
(x ∈ V)

M ∈ Λ

(λx.M) ∈ Λ
((x ∈ V))

M ∈ Λ N ∈ Λ

(M N) ∈ Λ

� In a lambda term M ·N , M is in the function position and N is an argument

� The leftmost, outer brackets can be ommitted (M N (P Q) = ((M N) (P Q)))

� Abstractions can be abbreviated λxyz.M = (λx.(λy.(λz.M)))

� Computation is expressed through term substitution.

Free Variables Definition 2.1.2

fv(x) = {x}
fv(λy.M) = fb(M) \ {y}
fb(M N) = fv(M) ∪ fv(N)

A λ-term M is closed if fv(M) = ∅.

Bound Variables Definition 2.1.3

bv(x) = ∅
bv(λy.M) = bv(M) ∪ y
bv(M N) = bv(M) ∪ bv(N)

A term with no free variables is closed.

We can define term substitution inductively as:
Where P [N/x] means replace x by N in λ-term P .

x[N/x] = N
y[N/x] = y
(P Q)[N/x] = P [N/x] Q[N/x]
(λy.M)[N/x] = λy.(M [N/x]) where y ̸= x
(λx.M)[N/x] = λx.M

This definition can result in variable capture, for example:

(λx.y x)[y/x] = λx.x x

Here the free y was substituted for another free variable x, how-
ever has been captured by the bound x in the abstraction.

Barendregt’s convention Definition 2.1.4

Given some (λx.M)N we can assume:

x ̸∈ fv(N) x is not free in N

∀y ∈ bv(M).[y ̸∈ fv(N)] All bound variables in M are not free in N

We can always rename the bound variables of a term, this is a fundamental feature to the degree that
α-conversion rarely plays a role and terms are considered modulo α-conversion.

4

Equivalence Relation Definition 2.1.5

A binary relation that is reflexive, symmetric and transitive.

α-Conversion Definition 2.1.6

(λx.M)N →α (λz.M [z/x])N where z is a new

Renaming bound variables within a term.

α-Equivalence Definition 2.1.7

N →α M ∧M →α N ⇔M =α N

Terms that can be made equal by α-conversion are
α-Equivalent

β-Conversion Definition 2.1.8

(λx.M)N
ReducibleExpression/Redex

→β M [N/x]
Contractum/Reduct

The one-step reduction →β can be defined with
contexual closure rules:

M →β N ⇒

λx.M →β λx.N

P M →β P N

M P →β N P

→ ∗β or ↠β is the transitive closure of →β .

=β is the equivalence relation generated by →∗
β :

M →∗
β N ⇒M =β N

As =β is an equivalence relation we also have:

M =β N ⇒ N =β M
M =β N ∧N =β P ⇒M =β P

We can also define this using an inference system:

(β) :
(λx.M)N →β M [N/x]

(Appl-L) :
M →β N

M P →β N P
(Appl-R) :

M →β N

P M →β P N

(Abstr) :
M →β N

λx.M →β λx.N

(Inheritr) :
M →β N

M →∗
β N

(Refl) :
M →∗

β M
(Transr) :

M →∗
β N N →∗

β P

M →∗
β P

(Inheritr) :
M →∗

β N

M =β N
(Symm) :

M =β N

N =β M
(Transeq) :

M =β N N =β P

M =β P

β-reduction is confluent/satisfies the Church-Rosser property:

∀N,M,P.[M →∗
β N ∧M →∗

β P ⇒ ∃Q.[N →∗
β Q ∧ P →∗

β Q]]

β-conversion does not conform to Barendregt’s convention, for example:

(λxy.xy)(λxy.xy) → (λxy.xy)[(λxy.xy)/x] = λy.(λxy.xy)y
→ λy.(λxy.xy)[y/x] = λy.(λy.yy)

We can avoid this by alpha converting the term to λy.(λxz.xz)y before β-conversion.

η-Reduction Definition 2.1.9

Given x ̸∈ fv(M) then λx.M x→η M

η-reduction can be used for eta equivalence. If f x = g x then we can eta reduce both to f = g.

� Eta reduction is a common lint provided hy hlint for haskell.

5

2.2 Reduction Strategies

Evaluation Context Definition 2.2.1

A term with a single hole ⌈⌋ :
C ::= ⌈⌋ | C M | M C | λx.C

C⌈M⌋ is the term obtained from context C by replacing the hole ⌈⌋ with M .

� This allows any variables to be captured.

The one step β-reduction rule can be defined for any evaluation context as:

CN⌈(λx.M)N⌋ → CN⌈M [N/x]⌋

2.2.1 Head Reduction

(λx.M)N →H M [N/x]

M →H N

λx.M →H λx.N

M →H N

M P →H N P

Reduce the leftmost term, if this is an abstraction, reduce the inside of the abstraction.

2.2.2 Call By Name / Lazy

(λx.M)N →N M [N/x]

M →N N

M P →N N P

Reduce the leftmost term. Do not reduce unless a term is applied (lazy evaluation).

We can also express reduction strategy with an evaluation context:

CN ::= ⌈⌋ | CNM where →N
β is defined as CN⌈(λx.M)N⌋ → CN⌈M [N/x]⌋

Note that there is only ever one redex to contract.

2.2.3 Call By Value

Given V denotes abstractions and variables (values):

(λx.M)V →V M [V/x]

M →V N

M P →V N P

M →V N

V M →V V N

We can apply values, the leftmost term that is not a value is reduced first.

We can also express reduction strategy with an evaluation context:

CV ::= ⌈⌋ | CVM | V CV where →V
β is defined as CV ⌈(λx.M)V ⌋ → CV ⌈M [V/x]⌋

Note that there is only ever one redex to contract.

2.2.4 Normal Order

(λx.M)N →N M [N/x]

M →N N

M P →N N P

M →N N

P M →N P N
(P contains no redexes)

M →N N

λx.M →N λx.N

Reduce the leftmost term until it contains no redexes (then continue to other terms), can reduce the inside of an
abstraction.

2.2.5 Applicative Order

(λx.M)N →A M [N/x]
(M,N contain no redexes)

M →A N

M P →a N P

M →A N

P M →A P N
(P contains no redex)

M →A N

λx.M →A λx.N

6

2.2.6 Computability

SKI Combinator Calculus Definition 2.2.2

S = λxyz.xz(yz) K = λxy.x I = λx.x

Any operation in lambda calculus can be encoded (by abstraction elimination) into the SKI calculus as a
binary tree with leaves of symbols S, K & I.

It is possible to encode all Turing Machines within lambda-calculus and vice versa. This makes λ-calculus (along
with Turing Machines) a model for what is computable.

Church-Turing thesis Extra Fun! 2.2.1

The Church-Turing thesis equivocates the computational power of Turing machines and the lambda calculus.
(Wikipedia)

It is possible to write terms that do not terminate under β-reduction:

(λx.xx) (λx.xx) →β (xx)[(λx.xx)/x] = (λx.xx) (λx.xx)

We can also apply functions continuously.

λf.(λx.f(x x))(λx.f(x x)) →β λf.(f(x x))[(λx.f(x x))/x] = λf.f((λx.f(x x))(λx.f(x x)))
→β λf.f(f((λx.f(x x))(λx.f(x x))))
→β λf.f(f(f((λx.f(x x))(λx.f(x x)))))
...
→β λf.f(f(f(f(f(. . .)))))

This term is a fixed point constructor.

Fixed-Point Theorem Definition 2.2.3

∀M.∃N.[M N =β N]

Take N = Y M where Y = λf.(λx.f(x x))(λx.f(x x)):

Y M ≜ λf.(λx.f(x x))(λx.f(x x)) M
→β (λx.M(x x))(λx,M(x x))
→β (λx.M(x x))(λx,M(x x))

M(Y M) ≜ M(λf.(λx.f(x x))(λx.f(x x)) M)
→β M((λx.M(x x))(λx,M(x x)))

Hence M(Y M) =β Y M meaning that Y is the fixed point constructor of M

2.3 Normal Forms

Normal Form Definition 2.3.1

A λ-term is in normal form if it does not contain a redex.

N ::= x | λx.N | xN1 . . . Nn where (n ≥ 0)

No β or η reductions are possible

7

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

Head Normal Form Definition 2.3.2

A λ-term is in head normal form if it is an abstraction with a body that is not reducible.

H ::= x | λx.H | xM1 . . .Mn where n ≥ 1 ∧Mi ∈ Λ

This will mean the term is of the form x or λx1 . . . xn.yM1 . . .Mm

� y is the head-variable

� If a term has a head-normal form, then head-reduction on the term terminates.

Head Normalisable Definition 2.3.3

A term M is head normalisable if it has a head-
normal form.

M →∗
β N where N is in head normal form

Strongly Normalisable Definition 2.3.4

A term M is strongly normalisable if all reduction
sequences starting from M are finite.

Meaningless Definition 2.3.5

A term without a head-normal form is meaningless as it can never interact with any context (can never apply
it to some argument).

Normal Forms Example Question 2.3.1

Determine the normality of the following terms:

1. λf.(λx.f(x x)) (λx.f(x x))

2. (λx.x x) (λx.x x)

3. S K

4. (λab.b) ((λx.x x) (λx.x x))

1. Not in either head normal form or normal form (contains a redex).

λf.(λx.f(x x))(λx.f(x x))

→βλf.f((λx.f(x x)) (λx.f(x x)))

However the β-reduction is in head normal form (head-variable is f).

2. It is a redex, so its not in a normal form. It does not have a normal form as it reduces to itself, so all
reducts contain a redex. It has no head-normal form.

3. Hence the original λ-term is not normal form, but it can be normalised.

S K Must expand S and K
= (λxyz.xz(yz)) (λxy.x) Is a redex
→β (λxyz.xz(yz)) (λxy.x) We rename y as per barendregt’s convention
=α (λxyz.xz(yz)) (λxa.x)
→β (λyz.(λxa.x)z(yz))
→β (λyz.(λa.z)(yz))
→β (λyz.z)

As all possible redexes are contracted it is strongly normalisable.

4. Contracting the outermost redex results in normal form ter λb.b. However contracting the inner term
yields itself. Hence it is normalisable, but not strongly normalisable.

8

2.4 Approximation Semantics

There are many methods of describing the semantics of the λ-calculus.

� Reduction rules with operational semantics

� set theory with denotational semantics

The approach studied in this module defines semantics in a denotational style, but using a reduction system for its
definition.

We introduce an extension to the λ-calculus syntax by adding the constant ⊥,

� ⊥ means unknown/meaningless/no information

� used to mask sub-terms (typically containing redexes) to allow us to focus on the the stable parts of the term
that do not change under reduction.

The set of Λ⊥-terms is defined as:
M,N ::= z | ⊥ | λx.M | M N

β-reduction is extended to →⊥ to include:

λx.⊥ →⊥ ⊥ and ⊥M →⊥ ⊥

Note that λx.⊥ is considered a redex.

The set of normal forms of Λ⊥ with respect to →⊥ is the set A:

A ::= ⊥ | λx.A (A ̸= ⊥) | xA1 . . . An

Approximant Definition 2.4.1

An approximant is a redex-free Λ⊥-normal forms that can contain ⊥ and are used to represent finite parts
of potentially infinitely large λ-terms in head-normal form.

The partial order ⊑ ⊆ (Λ⊥)2 is defined as the smallest pre-order (reflexive and transitive) such that:

⊥ ⊑M M ⊑M ′ ⇒ λx.M ⊑ λx.M ′

x ⊑ x M1 ⊑M ′
1 ∧M2 ⊑M ′

2 ⇒ M1M2 ⊑M ′
1M

′
2

� For A ∈ A,M ∈ Λ, if A ⊑M then A is the direct approximant of M

� The set of approximants of M,A(M) is defined as:

A(M) ≜ {A ∈ A|∃M ′ ∈ Λ.[M →∗
β M

′ ∧A ⊑M ′]}

� If A is a direct approximant of M , then A and M have the same structure, but some parts A contains
⊥ (⊥ masking part of M).

� Redexes in M are masked by ⊥ in A (⊥ masks the redex, or a larger location that contains the redex).

Direct Approximants Example Question 2.4.1

Show the direct approximants for each reduction step of:

1. S K

2. S a K

1.

S K = (λxyz.xz(yz)) (λab.a) →β λyz.(λab.a)z(yz) →β λyz.(λb.z)(yz) →β λyz.z
{⊥} {⊥} {⊥} {⊥, λyz.z}

2.
S a K = (λxyz.xz(yz)) a (λcd.c) {⊥}
→β (λyz.az(yz)) (λcd.c) {⊥}
→β (λz.az((λcd.c)z)) {⊥, λz.a⊥⊥, λz.az⊥}
→β (λz.az(λd.z)) {⊥, λz.a⊥⊥, λz.az⊥, λa⊥(λd.z), λaz(λd.z)}

9

Some basic approximants are:

A(λx.x) = {⊥, λx.x}
A(λx.x x) = {⊥, λx.x⊥, λx.x x}

A(λx.x((λy.yy)(λy.yy))) = {⊥, λx.x⊥}
A(S) = A(λxyz.xz(yz)) {⊥, λxyz.x⊥⊥, λxyz.x⊥(y⊥), λxyz.x⊥(yz), λxyz.xz⊥, λxyz.xz(y⊥), λxyz.xz(yz)}

A(λf.(λx.f(x x)) (λx.f(x x))) {⊥, λf.f(⊥), λf.f(f(⊥)), λf.f(f(f(⊥))), . . . }

2.4.1 Properties of Approximants

(A ∈ A(xM1 . . .Mn) ∧A ̸= ⊥ ∧A′ ∈ A(N)) ⇒ AA′ ∈ A(xM1 . . .MnN)

Given A is in the approximants of some variable x are lambda terms M1 . . .Mn, and A
′ in the approximants of N ,

then AA′ is in the approximants of A A′ (Applying A to A′).

(A ∈ A(Mz) ∧ z ̸∈ fv(M)) ⇒

 A = ⊥
∨ A ≡ A′z where z ̸∈ fv(A′) ∧A′ ∈ A(M)
∨ λx.A ∈ A(M)

If A is an approximant of Mz, and z is not free in M , then either:

� A is ⊥
� A is some A′z, hence be η-reduction, we can see A′ ∈ A(M) (the z part can be disregarded, and just look at
approximates of M).

A ⊑M ∧M →∗
β N ⇒ A ⊑ N

If A is ordered before M , and M β-reduces to N , then A is also before N .

A ∈ A(M) ∧M →∗
β N ⇒ A ∈ A(N) A ∈ A(N) ∧M →∗

β N ⇒ A ∈ A(M)

Beta reduction is irrelevant.

M1 ⊑M ∧M2 ⊑M ⇒M1 ⊔M2 is defined ∧M1 ⊑M1 ⊔M2 ∧M2 ⊑M1 ⊔M2 ∧M1 ⊔M2 ⊑M

M =β N ⇒ A(M) = A(N)

Join (⊔) Definition 2.4.2

Join is a partial mapping on Λ⊥ (⊔ : Λ⊥× Λ⊥ → Λ⊥):

⊥ ⊔M ≡M ⊔ ⊥ ≡M

x ⊔ x ≡ x

(λx.M) ⊔ (λx.N) ≡ λx.(M ⊔N)

(M1 M2) ⊔ (N1 N2) ≡ (M1 ⊔N1) (M2 ⊔N2)

If M ⊔N is defined, then M and N are compatible.

� Compatible terms are equal, but with ⊥ in some locations.

� It is undefined for terms with different structures, e.g (x and λx.x)

2.5 Explicit Lambda Calculus

� Substitution in λ-calculus is atomic. M [N/x] replaces all x in M in a single step.

� Substitution is not cost-free in some execution models, hence we may want to make substitution explicit so it
can be tracked as part of β-reduction.

10

Explicit λ-calculus (λx) is defined as:

M,N ::= x | λx.M | M N | M⟨x := N⟩

For M⟨x := N⟩ occurrences of x in M are bound, and by barendregt’s convention x cannot occur (free or bound) in
N .

(λx.M) N →M⟨x := N⟩
(M N)⟨x := L⟩ → (M⟨x := L⟩)(N⟨x := L⟩)
(λy.M)⟨x := L⟩ → λy.(M⟨x := L⟩)

x⟨x := L⟩ → L

M⟨x := L⟩ →M given (x ̸∈ fv(M))

M → N ⇒

λx.M → λx.N

M L → N L

L M → L N

M⟨x := L⟩ → N⟨x := L⟩
L⟨x :=M⟩ → L⟨x := N⟩

If →β is not applied the →:= is used. The combination of both reductions for this system is →x.

M →β N ⇒M →∗
x N

Can reduce anything β-reduction can
M ∈ Λ ∧M →∗

x N ⇒ ∃L ∈ Λ.[N →∗
:= L ∧M →∗

β L]

β-reduction is equivalent to doing all explicit
substitutions, then β reducing

11

Chapter 3

Curry Type Assignment

Type assignment follows the syntactic structure of terms. For example λx.M will be of the form A → B where the
input x is of type A, and M is of type B.

TC is the set of types.

� This is ranged over by A,B . . . and defined over the set of type variables Φ.

� The set of type variables Φ is ranged over by φ

A,B ::= φ | (A→ B)

A type can be either some type variable (some type e.g Int), or a function converting one type to another.

Statement Definition 3.0.1

An expression of the form M : A where M ∈ Λ and A ∈ Tc.

� M is the subject

� A is the predicate

Context Definition 3.0.2

A context Γ is a set of statements with distinct variables as subjects.

� Γ, x : A is shorthand for Γ ∪ {x : A} where x does not occur as a subject in Γ (variables must be
distinct).

� x : A is shorthand for ∅, x : A.

� x ∈ Γ is shorthand for ∃A ∈ TC .[x : A ∈ Γ], likewise, if x is not typed in the context we use x ̸∈ Γ.

For example:
Γmy context = {x : A, y : B, c : B}

→ is used for function types, it is right associative, so:

(A→ B) → C → D ≡ (A→ B) → (C → D)

3.0.1 Curry Type Assignment

(Ax) :
Γ, x : A ⊢C x : A

(→ I) :
Γ, x : A ⊢C M : B

Γ ⊢C λx.M : A→ B
(x ̸∈ Γ) (→ E) :

Γ ⊢C M1 : A→ B Γ ⊢C M2 : A

Γ ⊢c M1M2 : B

� We can extend barendregt’s convention to ommit the side-condition on → I by adding the assertion that:

Γ ⊢M : A we ensure ∀x ∈ bv(M).[x ̸∈ Γ]

� The definition provided is sound :

(Γ ⊢c M : A) ∧ (M →∗
β N) ⇒ Γ ⊢C N : A

12

Some terms are not typeable under this definition, as self-application is not possible:

� λx.x x is not typeable, neither is λf.(λx.f(x x))(λx.f(x x))

� Type assignment rules do not cover approximants, and hence they are not typeable.

Self Application Example Question 3.0.1

Is it possible to type self-application x x?

We can attempt to use the inference system, however run into a contradiction:

Γ, x : A→ B ⊢C x : A→ B
(Ax)

Γ, x : A ⊢C x : A
(Ax)

Γ, x :? ⊢C x x : B
(→ E)

Hence we need a type such that A→ B = A.

3.0.2 Important Lemmas For Type Assignment

Term Substitution

∃C.[(Γ, x : C ⊢C M : A) ∧ (Γ ⊢C N : C)] ⇒ Γ ⊢C M [N/x] : A

Free Variables

Γ ⊢C M : A ∧ x ∈ fv(M) ⇒ ∃B ∈ TC .[x : B ∈ Γ]

All free variables in M are typed.

Weakening

Γ ⊢C M : A ∧ Γ′ is such that ∀x : B ∈ Γ′.[x : B ∈ Γ ∨ (x ̸∈ fv(M) ∧ x ̸∈ bv(M)) ⇒ Γ′ ⊢C M : A]

We can create a new context Γ′ that types variables x, y, z, If for every variable in the context Γ′ it is either not
in Γ, or is in Γ with the same type, then we can use Γ′ to type M .

Thinning

Γ, x : B ⊢C M : A ∧ x ̸∈ fv(M) ⇒ Γ ⊢C M : A

If a variable is not free in M , then we do not need a type for it.

3.1 Principle Type Property

Principle type theory expresses the idea that a whole family of types could be assigned to a term, however only one
is the principle type.

Type Substitution Definition 3.1.1

(φ 7→ C) : TC → TC where φ is a type variable and C ∈ TC
Substitution is defined by:

(φ 7→ C) φ = C
(φ 7→ C) φ′ = φ′ (φ ̸= φ′)
(φ 7→ C) A→ B = ((φ 7→ C) A) → ((φ 7→ C) B)

Here (φ 7→ C) is a substitution substituting the type variable φ for the type C

S1 ◦ S2 means S1 ◦ S2 A = S1(S2 A) S Γ = {x : S B|x : B ∈ Γ} S⟨Γ;A⟩ = ⟨S Γ;S A⟩

� If there is a substitution S such that S A = B then B is the substitution instance of A.

� IdS (identity substitution) maps every type variable to itself.

13

For each typeable term M there is a principal pair:

⟨Π;P ⟩ where Π is a context and P ∈ TC such that ∀Γ, A ∈ TC .∃ substitution S.[S⟨Π;P ⟩ = ⟨Γ;A⟩]

Soundness Definition 3.1.2

A logical system is sound if every formula provable
using the system is logically valid according to the
semantics of the system.

Provable⇒ True

Completeness Definition 3.1.3

A logical system is complete if any true statement
can be proved using the system.

True⇒ Provable

This definition is sound, for every substitution S:

if there is a derivation for Γ ⊢C M : A then we can construct a derivation for S Γ ⊢C M : S A

3.1.1 Unification

Robinson’s Unification Definition 3.1.4

unify φ φ = (φ 7→ φ)
unify φ B = (φ 7→ B) given φdoes not occur in B
unify A φ = unify φ A
unify (A→ B) (C → D) = S1 ◦ S2 where

S1 = unify A C
S2 = unify (S1 B) (S1 D)

� Unification is associative and commutative

� It returns the most general unifier of two types (the common substitution instance)

Robinson’s Unification can be generalised to unify contexts.

unifyContexts (Γ1, x : A) Γ2 = unifyContexts Γ1 Γ2 given x does not occur in Γ2

unifyContexts ∅ Γ2 = IdS
unifyContexts (Γ1, x : A) (Γ2, x : B) = S1 ◦ S2 where

S1 = unify A B
S2 = unifyContexts (S1 Γ1) (S1 Γ2)

3.1.2 Curry Principle Pair

Curry Principle Pair Definition 3.1.5

Every term M has a (Curry) Principle Pair defined as ppc M = ⟨Π;P ⟩ by:

ppc x = ⟨x : φ;φ⟩ where φ is fresh

ppc λx.M =

{
⟨Π′;A→ P ⟩ (Π = Π′, x : A)

⟨Π;φ→ P ⟩ (x ̸∈ Π)

where ⟨Π;P ⟩ = ppc M
φ is fresh

ppc M N = S2 ◦ S1⟨Π1 ∪Π2;φ⟩
where ⟨Π1;P1⟩ = ppc M

⟨Π2;P2⟩ = ppc N
S1 = unify P1 (P2 → φ)
S2 = unifyContexts (S1 Π1) (S1 Π2)
φ is fresh

Substitution is complete:

∀Γ,M ∈ Λ, A ∈ Tc.[Γ ⊢c M : A⇒ ∃Π, P ∈ Tc, S.[ppc M = ⟨Π;P ⟩ ∧ s Π ⊆ Γ ∧ S P = A]]

14

Chapter 4

Polymorphism

We can extend the λ-calculus to allow for functions that are polymorphic (can be applied to many different types of
inputs).

� We can extend to include names and definitions (e.g name =M)

� When type checking we can associate a call to a name with its definition, avoiding the need to re-type check
for each call to a function.

4.1 Language ΛN

ΛN is Lambda Calculus with names. The syntax is as follows:

name ::= ’A string of characters’

N,M ::= x | name | λx.N | M N

Defs ::= Defs;name =M |ϵ where M is closed and name-free

Program ::= Defs :M

Reduction on terms can be defined by an inference system.

(λx.M)N →M [N/x]

Substitution of terms

name→M
(name =M ∈ Defs)

Substituting of names for definitions (inlining)

M → N

λx.M → λx.N

M → N

M P → N P

M → N

P M → P N

Reduction of terms

M → N

M →∗ N M →∗ M

M →∗ N N →∗ P

M →∗ P

Transitive closure of reduction

M → N

Defs :M → Defs : N

Reduction on Programs

� Names are closed λ-terms (have no free variables).

� If a name is used but not defined, then the program is irreducible.

� Programs written in ΛN can be translated to Λ by substituting names.

We can translate using the transformation ⟨·⟩λ : ΛN → Λ:

⟨x⟩λ = x

⟨name⟩λ =

{
⟨M⟩λ if (name =M) ∈ Defs

undefined otherwise

⟨λx.N⟩λ = λx.⟨N⟩λ
⟨N M⟩λ = ⟨N⟩λ ⟨M⟩λ

15

4.2 Type Assignment for ΛN

By extending Curry’s type assignment system for λ-calculus we must consider the types of names in definitions.

Environment Definition 4.2.1

An environment E is a mapping on names→ Tc.

� Similar to a context, but for names rather than terms.

� E , name : A = E ∪ {name : A} where either name : A ∈ E or name does not occur in E .

(Ax) :
Γ, x : A; E ⊢ x : A

(→ I) :
Γ, x : A; E ⊢ N : B

Γ; ϵ ⊢ λx.N : A→ B
(→ E) :

Γ; E ⊢ P : A→ B Γ; E ⊢ Q : A

Γ; E ⊢ P Q : B

We have extended the curry type inference to include the environment E .

(ϵ) :
E ⊢ ϵ : ♢

We do not need to consider contexts (definitions use closed terms, no free variables from a context are required to
type). ♢ is not a type, but rather notation of showing there is a type.

(Defs) :
E ⊢ Defs : ♢ ∅; ∅ ⊢M : A

E , name : A ⊢ Defs;name =M : ♢

A name can be defined, it must be closed (hence why context is ∅). Notice this definition ensures definitions are
closed and name-free as the rule provides an empty environment and context.

(Call) :
Γ; E , name : A ⊢ name : S A

(Program) :
E ⊢ Defs : ♢ Γ; E ⊢M : A

Γ; E ⊢ Defs :M : A

4.3 Principal Types for ΛN

ppΛN x E = ⟨x : φ;φ⟩ where φ is fresh
ppΛN name E = ⟨∅;FreshInstance(E name)⟩

ppΛN (λx.M) E =

{
⟨Π′;A→ P ⟩ (Π = Π′, x : A)

⟨Π;φ→ P ⟩ (x ̸∈ Π)

where ⟨Π;P ⟩ = ppΛN M E
φ is fresh

ppΛN (M N) E = S2 ◦ S1⟨Π1 ∪Π2;φ⟩
where ⟨Π1;P1⟩ = ppΛN M E

⟨Π2;P2⟩ = ppΛN N E
S1 = unify P1 P2 → φ
S2 = unifyContexts (S1Π1) (S1Π2)
φ is fresh

We also need to define ppΛN for definitions.

BuildEnv (Defs;name =M) = (BuildEnv Defs), name : A where ⟨∅;A⟩ = ppΛN M ∅
BuildEnv ϵ = ∅

Hence we can now define:

ppΛN (Defs;M) = ppΛN M E where E = BuildEnv Defs

� For each name encountered, the environment is checked to find its principle type, a fresh instance of this type
is taken (with all type variables replaced by fresh ones) this allows for polymorphism.

16

Identity Example Question 4.3.1

Derive the ΛN type for λx.x where it is named Id

∅ ⊢ ϵ : ♢
(ϵ)

x : φ; ∅ ⊢ x : φ
(Ax)

∅; ∅ ⊢c λx.x : φ→ φ
(→ I)

Id : φ→ φ ⊢ I = λx.x
(Defs)

Call1 Call2

∅; Id : φ→ φ ⊢ Id Id : A→ A
(→ E)

∅; Id : φ→ φ ⊢ I = λx.x : Id Id : A→ A
(Program)

Call1 =
∅; I : φ→ φ ⊢ I : (A→ A) → A→ A

(Call)

Call2 =
∅; I : φ→ φ ⊢ I : A→ A

(Call)

17

Chapter 5

Recursion

We can extend ΛN to include recursion as language ΛNR.

� Definitions can reference their own names, as well as other’s names (e.g for mutually recursive functions)

5.1 Language ΛNR

name ::= ’A string of characters’

N,M ::= x | name | λx.N | M N

Defs ::= Defs;name =M | Defs; (rec name =M) | ϵ where M is closed

Program ::= Defs :M

The requirement that M be name-free is removed, and a function labeled rec can be recursive.

Y combinator Definition 5.1.1

Y = λf.(λx.f(x x)) (λx.f(x x))

Can be used to encode recursion:
F = C[F] → Y (λf.C[f])

Factorial Example Question 5.1.1

Write factorial in ΛNR given you can use arithmetic and the Cond function. Then encode it using the Y
combinator.

Factorial = λn.(Cond (n == 0) 1 (n× (Factorial (n− 1))))

And with the Y combinator:

Fac = Y.(λfn.Cond (n == 0) 1 (n× f(n− 1)))

We cannot directly translate ΛNR to lambda calculus as with ΛN , and instead must alter recursive functions to
make use of the Y combinator.

Y is not typeable under the ⊢c scheme discussed in these notes, so we must add an extension:

M,N ::= . . . | Y

Add Y as a special term in the syntax.

Y M →M(Y M)

Add the reduction rule for Y.

Γ ⊢ Y : (A→ A) → A

Add a type assignment rule.

5.2 Type Assignment for ΛNR

(Ax) :
Γ, x : A; E ⊢ x : A

(→ I) :
Γ, x : A; E ⊢ N : B

Γ; E ⊢ λx.N : A→ B
(→ E) :

Γ; E ⊢ P : A→ B Γ; E ⊢ Q : A

Γ; E ⊢ P Q : B

18

The main 3 typing rules remain unchanged.

(Call) :
Γ; E , name : A ⊢ name : S A

(Rec Call) :
Γ; E , rec name : A ⊢ name : A

� Call remains the same (still just substitutes the definition)

� A recursive call is added, however the type cannot be substituted for this as the definition internally relies on
the type.

(Def) :
E ⊢ Defs : ♢ ∅; E ⊢M : A

E , name : A ⊢ Defs;name =M : ♢
(Rec Def) :

E ⊢ Defs : ♢ ∅; E , rec name : A ⊢M : A

E , name : A ⊢ Defs; rec name =M : ♢

� Definitions are no longer name-free and thus we must carry the environment in Def .

� Recursive calls are typed with the same environment.

(ϵ) :
E ⊢ ϵ : ♢

(Program) :
E ⊢ Defs : ♢ Γ; E ⊢M : A

Γ; E ⊢ Defs :M : A

5.3 Principle Types for ΛNR

ppΛNR x E = ⟨x : φ;φ; E⟩ where φ is fresh

ppΛNR name E =

{
⟨∅;A; E⟩ (rec name : A ∈ E)
⟨∅;FreshInstance(E name); E⟩ (name : A ∈ E)

ppΛNR (λx.M) E =

{
⟨Π′;A→ P ; E ′⟩ (Π = Π′, x : A)

⟨Π;φ→ P ; E ′⟩ (x ̸∈ Π)

where ⟨Π;P ; E ′⟩ = ppΛNR M E
φ is fresh

ppΛNR (M N) E = S2 ◦ S1⟨Π1 ∪Π2;φ; E ′′⟩
where ⟨Π1;P1; E ′⟩ = ppΛNR M E

⟨Π2;P2; E ′′⟩ = ppΛNR N E
S1 = unify P1 P2 → φ
S2 = unifyContexts (S1Π1) (S1Π2)
φ is fresh

For defs we must modify the buildEnv function to use environments:

BuildEnv (defs;name =M) E = (BuildEnv Defs E), name : A where ⟨∅;A; E⟩ = ppΛNR M E
BuildEnv (defs; rec name =M) E = (BuildEnv Defs E), name : S A

where ⟨∅;A; E ′⟨ = ppΛNR M(E , rec name : φ)
S = unify A B
rec name : B ∈ E ′

φ is fresh
BuildEnv ϵ E = E
ppΛNR(Defs;M)

Hence we can now define ppΛNR for Defs:

ppΛNR (Defs;M) = ppΛNR M E where E = BuildEnv Defs ∅

19

Chapter 6

Milner’s ML

LML Definition 6.0.1

LML is a simple programming language supporting shallow polymorphic procedures on a wide variety of
objects.

� It is an extension of λ-calculus

� Adds a construct for expressing recursion

� Adds a construct for expressing sub-terms can be used in different ways.

A new type-assignment algorithm is paired with LML called W:

� Semantically Sound - all typed programs are correct.

� Syntactically Sound - if W accepts a program, then it is well-typed.

6.1 The ML Type Assignment System

ML expressions are of the form:

E ::= x | c | λx.E | E1 E2 | let x = E1 in E2 | fix g.E

where:

� x is bound over E2 in let x = E1 in E2

� g is bound over E in fix g.E

� c is a term constant, such as a number, character or operator

6.1.1 Term Substitution

Term substitution is defined as with the following rules:

x[E/x] = x

y[E/x] = y (y ̸= x)

Basic substitution of variables.

(λy.E′)[E/x] = λy.(E′[E/x])

(E1 E2)[E/x] = E1[E/x] E2[E/x]

Substitution of sub-terms.

(let y = E1 in E2)[E/x] = let y = E1[E/x] in E2[E/x]

(fix g.E′)[E/x] = fix g.E′[E/x]

let statements and fixed point (for recursion)
Note that barendregt’s convention assumed here.

� The let construction is added to cover cases where (λx.E1)E2 is not typeable but where the contraction E1[E2/x]
is typeable.

� The fix construction introduces model recursion. It is not a combinator, but rather another abstraction
mechanism (e.g like λ.).

20

6.1.2 Reduction

Reduction on LML is →ML and is defined as an extension of →β , with the additional rules:

let x1 = E1 in E2 →ML E2[E1/x]

fix g.E →ML E[(fix g.E)/g]

We also add some contextual rules.

E →ML E
′ ⇒

let x = E in E2 →ML let x = E′ in E2

let x = E1 in E →ML let x = E1 in E′

fix g.E →ML fix g.E′

Under reduction both let x = E2 in E1 and (λx.E1) E2 are reducible expressions and both reduce to E1[E2/x]

� (λx.E1) E2 semantically interpreted as a function with an operand x

� let x = E2 in E1 interpreted as a substitution.

Type assignment treats both differently.

6.1.3 Type Assignment

The set of types is defined similarly to with curry types (Tc).

� Extended with type constants ′C that includes int,bool,

� Ranged over by type A,B, . . . much like with Tc.
� Types can be quantified, creating generic types / type schemes ranged over by σ, τ,

A,B ::= φ | c | (A→ B) (basic types)
σ, τ ::= A | (∀φ.τ) (polymorphic types)

Types of the form ∀φ.τ are called quantified types.

� (∀φ1.(∀φ2. . . . (∀φn.A) . . .)) is abbreviated by ∀⇀φ.A
� φ is bound in ∀φ.τ
� Free and bound type variables can be defined just as with variables in λ-calculus, but must have names kept
separate.

ML type substitution is defined as:

(φ 7→ C) φ = C
(φ 7→ C) c = c
(φ 7→ C) φ′ = φ′ (φ′ ̸= φ)
(φ 7→ C) A→ B = ((φ 7→ C)A) → ((φ 7→ C)B)

Basic type substitutions

(φ 7→ C) ∀φ′.ψ = ∀φ′.((φ 7→ C)ψ)

Quantified types
Unification is also extended with type constants as:

unify φ c = (φ 7→ c)
unify c φ = unify φ c
unify c c = IdS

� Here a unification of all other cases including a type constant will fail (e.g cannot unify int and bool)

� Types are considered modulo a kind of α-conversion (similar to barendregt’s convention - avoid type variable
capture)

� As φ′ is bound in ∀φ′.ψ we can assume in (φ 7→ C) ∀φ′.ψ we have φ ̸= φ′ and φ′ ̸∈ fv(C).

� As we can have free type variables, the set of types occurring in ∀φ1 . . . ∀φn.A is not necessarily {φ1, . . . , φn}.

Γ A = ∀⇀φ.A
⇀
φ appear free in A, but are not in the context of A.

21

For the inference system expressing type assignment, we include a function ν which maps constants to their type
(e.g a constant type such as Char, Int or a closed polymorphic type).

(Ax) :
Γ, x : τ ⊢ x : τ

Basic substitution of free variable

(C) :
Γ ⊢ c : ν c

Substituting constants

(→ I) :
Γ, x : A ⊢ E : B

Γ ⊢ λx.E : A→ B
(→ E) :

Γ ⊢ E1 : A→ B Γ ⊢ E2 : A

Γ ⊢ E1 E2 : B

(let) :
Γ ⊢ E1 : τ Γ, x : τ ⊢ E2 : B

let x = E1 in E2 : B
(fix) :

Γ, g : A ⊢ E : A

Γ ⊢ fix g.E : A

(∀I) :
Γ ⊢ E : τ

Γ ⊢ E : ∀φ.τ
(φ not free in Γ) (∀E) :

Γ ⊢ E : ∀φ.τ
Γ ⊢ E : τ [A/φ]

Quantification is introduced to model substitution operations on types, rasther than replacing all type variables at
once.

� ∀φ : τ - all occurrences of type variable φ can be replaced by some basic type.

� The side condition on ∀I ensures that the type variables used do not also occur in the context (there is no
reference back to the context).

We can model the substitution of φ in A, by type B as (φ 7→ B) A.

∅ ⊢ML E : A

∅ ⊢ML E : ∀φ.A
(∀I)

∅ ⊢ML E : A[B/φ]
(∀E)

The let construct corresponds to definitions in ANR.

� Can occur anywhere within a term.

� Given let x = E1 in E1, E1 does not need to be a closed-term, so it is possible to define terms that are
partially-polymorphic (a term of type ∀⇀φ.A where A contains free type variables).

� When applying ∀I only the type variable that we attempt to bind must not occur in the context.

To allow for recursion to be typed, the syntax for fix is added.

� Previously we have seen Y added as a typed constant.

� It is also possible to solve this by defining letrec as a combination of let and fix (letrec g = λx.E1inE2)

6.1.4 Lemmas for Type Assignment

Free Variables

(Γ ⊢ML E : τ ∧ x ∈ fv(E)) ⇒ ∃σ.[x : σ ∈ Γ]

All free variables in some expression must have a type in the context.

Weakening

(Γ ⊢ML E : τ ∧ ∀x : σ ∈ Γ′[x : σ ∈ Γ ∨ x ̸∈ (fv(E) ∪ bv(E))]) ⇒ Γ′ ⊢ML E : τ

Given some context Γ, any context that extends Γ without adding any of E’s variables is equivalent.

Thinning

(Γx : σ ⊢ML E : τ ∧ x ̸∈ fv(E)) ⇒ Γ ⊢ML E : τ

We can remove variables that are not free in E from the context, and the context will still be able to type E.

22

Generation

>Γ Definition 6.1.1

Γ ⊢ML E : A[B/φ]

The smallest reflexive and transitive relation such that:

ρ >Γ ∀φ.ρ (φ is not free in Γ and not bound in ρ)

∀φ.ρ >Γ ρ[B/φ]

Where there are no free φ′ in A.

� If σ >Γ τ then τ is a generic instance of σ.

� Each context Γ induces a new relation.

� This relation represents applying the ∀I and ∀E steps.

Γ ⊢ML E : σ ∧ σ >Γ τ ⇒ ΓMLE : τ

(1) Γ ⊢ML x : σ ⇒ ∃x : τ ∈ Γ. τ >Γ σ

(2) Γ ⊢ML λx.E : σ ⇒ ∃A,B. Γ, x : A ⊢ML E : B

∧ σ = ∀⇀
φi.A→ B

∧ A→ B >Γ σ

(3) Γ ⊢ML E1 E2 : σ ⇒ ∃A,B. Γ ⊢ML E1 : A→ B
∧ Γ ⊢ML E2 : A
∧ B >Γ σ

(4) Γ ⊢ML fix g.E : σ ⇒ ∃A. Γ, g : A ⊢ML E : A

∧ σ = σ = ∀⇀
φi.A

∧ A >Γ σ

(5) Γ ⊢ML let x = E1 in E2 : σ ⇒ ∃A, τ Γ, x : τ ⊢ML E2 : A
∧ Γ ⊢ML E1 : τ
∧ A >Γ σ

System F Extra Fun! 6.1.1

The ML type assignment is a restriction on the polymorphic type discipline (System F).

� In the ML type assignment covered in these notes, ∀ occurs outside of a type (shallow polymorphism).
It is also decidable.

� In System F ∀ is a general type constructor, so A→ ∀φ.B is a valid type. It is not decidable.

Complex Types Example Question 6.1.1

Type let i = λx.x in i i.

x : φ ⊢ x : φ
(Ax)

∅ ⊢ λx.x : φ→ φ
(→ I)

∅ ⊢ λx.x : ∀φ.φ→ φ
(∀I)

(1) (2)

i : ∀φ.φ→ φ ⊢ i i : A→ A
(→ E)

∅ ⊢ let i = λx.x in i i : A→ A
(let)

where:

(1) =
i : ∀φ.φ→ φ ⊢ i : ∀φ.φ→ φ

(Ax)

i : ∀φ.φ→ φ ⊢ i : (A→ A) → A→ A
(∀E)

23

(2) =
i : ∀φ.φ→ φ ⊢ i : ∀φ.φ→ φ

(Ax)

i : ∀φ.φ→ φ ⊢ i : A→ A
(∀E)

Addition Example Question 6.1.2

Express Addition in ML.

We can use type constants by defining then in ν:

ν x =

Num→ Num x = Succ

Num→ Num x = Pred

Num→ Bool x = IsZero

∀φ.Bool → φ→ φ→ φ x = Cond
...

...

We can define it recursively as:

Add = λxy.Cond (IsZerox) y (Succ (Add (Predx)y))

This recursion can be implemented in ML using fix.

Add = fix a.λxy.Cond (IsZerox) y (Succ (a (Predx)y))

6.2 Milner’s W
Milner’s Type Assignment Algorithm Definition 6.2.1

Milner’s W is a type assignment algorithm for ML.

� It has a principle type property - given any Γ and E there is a principle type computed by W.

� Its does not have the principle pair property as if Γ, x : τ ⊢ML E : A may exist, but λx.E may not be
typeable.

� Type assignment is decidable.

It is complete, given some E, contexts Γ and Γ′ and type A:

Γ′ is an instance of Γ ∧ Γ′ ⊢ML E : A⇒ W Γ E = ⟨S,B⟩ ∧ ∃ S′. [Γ′ = S′(S Γ) ∧ S′(S B) >Γ′ A]

It is also sound:
∀ E. [W Γ E = ⟨S,A⟩ ⇒ S Γ ⊢ML E : A]

6.2.1 Basic Cases

W Γ c = ⟨id,B⟩
where ν c = ∀⇀φ.A

B = A[
⇀

φ′/φ]
all φ′ are fresh

W Γ (λx.E) = ⟨S, S (φ 7→ A)⟩
where ⟨S,A⟩ = W (Γ, x : φ) E

φ is fresh

W Γ x = ⟨id,B⟩
where x : ∀⇀φ.A ∈ Γ

B = A[
⇀

φ′/φ]
all φ′ are fresh

24

6.2.2 Let Construct

W Γ (let x = E1 in E2) = ⟨S2 ◦ S1, B⟩
where ⟨S1, A⟩ = W Γ E1

⟨S2, B⟩ = W (S1Γ, x : σ) E2

σ = S1ΓA

1. Get the type and substitutions for E1 given the context Γ

2. Get the type and substitutions for E2, the context needs to have E1’s substitutions applied, we add in a new
variable x (it will be free in E2) and give it a ∀ type that uses no type variables already bound in S1 Γ.

3. The resulting type for E2 is the type of the whole term, we must compose the substitutions for E1 and E2.

6.2.3 Fix Construct

W Γ (fix g.E) = ⟨S2 ◦ S1, S2 A⟩
where ⟨S1, A⟩ = W (Γ, g : φ) E

S2 = unify (S1φ) A
φ is fresh

1. g must have the same type as E (recursion, the inner call has the same type as the outer), hence to compute
the pair for E we add g to the context with fresh type variable φ

2. We then get a substitution S1 and type A, we must unify this with the type of g (with S1 applied) to type the
whole term.

6.2.4 Application

W Γ (E1 E2) = ⟨S3 ◦ S2 ◦ S1, S3φ⟩
where ⟨S1, A⟩ = W Γ E1

⟨S2, B⟩ = W (S1 Γ) E2

S3 = unify (S2 A) (B → φ)
φ is fresh

1. First the type of E1 is computed ass type A, with substitutions S1.

2. Next we get the type of E2, first applying the substitution S1 to the context Γ.

3. We now have E1 : A and E2 : B. A must be equal to some type B → φ (E1 is a function taking E2 as input),
hence we unify A with B → φ

6.3 Polymorphic Recursion

Mycroft generalised Milner’s system in an attempt to improve typing for recursively defined objects.

map f ls = if null ls then ls else cons (f (head ls)) (map f (tail ls))

squarelist ls = map (\x -> x^2) ls

In ΛNR this would be defined as:

... (definitions of head, tail, cons, etc)
map = λf ls.Cond (null ls) ls (cons (f (head ls)) (map f (tail ls)))
squarelist = λls.map (λx.mul x x) ls

The name squarelist could then be used in a program.

In ML there is no check to see if functions are independent or mutually recursive, so all definitions must be done in
a single step. Hence we can extend LML with a pairing function ⟨ . , . ⟩:

let ⟨map, squarelist⟩ = fix ⟨m, s⟩.⟨λf ls.Cond (null ls) l (cons (f (head ls)) (m f (tail ls))), λls.m (λx.mul x x) ls⟩ in . . .

However we still have a type assignment issue, W will get the following types:

map :: (num→ num) → [num] → [num]
squarelist :: [num] → [num]

25

The definition of map has the type:

map :: ∀φ1φ2.(φ1 → φ2) → [φ1] → [φ2]

For fix g.E milner’s W unifies the type of E and g, this results in the second type of map not being found by
type inference.

One way to avoid this problem is to treat the term as a single definition.

let map = fix m.λf ls.Cond (null ls) ls (cons (f (head ls)) (m f (tail ls))) in let squarelist = λls.map (λx.mul x x) ls in . . .

Instead in Mycroft’s system the fix rule is altered.

(fix) :
Γ, g : A ⊢ E : A

Γ ⊢ fix g.E : A

Milner’s

(fix) :
Γ, g : τ ⊢MYC E : τ

Γ ⊢MYC fix g.E : τ

Mycroft’s
Hence the derivation rule allows for type-schemes (the τ) which means different curry types (e.g A) may be used.

6.3.1 Mycroft-Style Assignment for ΛNR

The rules for ϵ, Call, Rec Call, Def and Rec Def can be replaced by the rules:

(ϵ) :
E ⊢ ϵ : ⋄

(Call) :
Γ; E , name : A ⊢ name : S A

(Defs) :
E , name : A ⊢ Defs : ⋄ ∅; E , name : A ⊢M : A

E , name : A ⊢ Defs;name =M : ⋄

With the principle pair algorithm as:

ppΛRN x E = ⟨x : E ; E⟩ where E is fresh

ppΛRN name E = ⟨∅;FreshInstance(E name)⟩

ppΛRN (λx.M) E =

{
⟨Π′;A→ P ⟩ (Π = Π′, x : A)

⟨Π;φ→ P ⟩ (x ̸∈ Π)

where ⟨Π;P ⟩ = ppΛRN M E
φ is fresh

ppΛRN (M N) E = S2 ◦ S1⟨Π1 ∪Π2; E⟩
where ⟨Π1;P1⟩ = ppΛRN M E

⟨Π2;P2⟩ = ppΛRN M E
S1 = unifyP1 (P2 → φ)
s2 = unifyContexts (S1 Π1) (S1 Π2)
φ is fresh

ppΛRN (Defs;M) E =

{
ppΛRN M E if CheckEnv Defs E
untypeable otherwise

where CheckEnv (Defs;name =M) E = (CheckEnv Defs E) ∧ (E name) = P
where⟨∅, P ⟩ = ppΛRN M E

CheckEnv ϵ E = true

6.3.2 Milner’s and Mycroft’s System’s Differences

As Mycroft’s system is an extension of Milner’s:

Typeable in Milner’s ⇒ Typeable in Mycroft’s

� Many terms are typeable in Mycroft’s but not in Milner’s

� Some terms can be given more general type in Mycroft’s than Milner’s

The key difference between the systems is that in Milner’s recursive calls use the same curry type, but in Mycroft’s
these can be a more general type, this allows for polymorphic recursion.

26

Typeability Example Question 6.3.1

Create a term typeable in Mycroft’s System but not in Milner’s.

fix g.(λ(ab.a) (g λc.c) (g λde.d))

We can write this as:

func :: a -> b

func = (\a b -> a) (func (\c -> c)) (func (\lambda d e -> d))

-- or more idomatically

func' = const (func' id) (func' const)

-- in execution this looks like:

func x

= const (func' id) (func' const) x

= func' id x

= const (func' id) (func' const) id x

= func' id id x

...

= func' id id ... id x

This is not typeable in Milner’s as here g effectively has two types. Mycroft’s allows this as both types can
come from the polymorphic type ∀φ1φ2.φ1 → φ2.

27

Chapter 7

Pattern Matching

Term Rewriting System Definition 7.0.1

An extension of lambda calculus allowing for formal parameters to have structure.

� Terms are built out of variables, function symbols and application.

� There is no abstraction, functions are modelled by rewrite rules specifying how terms are modified.

7.1 Syntax

An alphabet/signature consists of a finite, countable set of variables and a non-empty set of function symbols (each
with fixed arity - number of parameters).

X = {x1, x2, . . . }
Variables

F = {F,G, . . . }
Function Symbols

The set of terms T (F ,X) ranged over by t is:

t ::= x | F | (t1 t2)

A replacement is where a term variable is consistently replaced (corresponds to the substitution of terms in λ-
calculus).

{x1 7→ t1, . . . , xn 7→ tn}
A replacement

tR

apply R to term t

7.2 Reduction

Rewrite Rule Definition 7.2.1

A pair of terms (l, r), often written as a named rule r : l → r.

Given that l = F t1 . . . tn for some F ∈ F(arity n) and t1, . . . , tn ∈ T (F ,X) ∧ fv(r) ⊆ fv(l)

� A patterns of a rule are the terms tt where either ti is not a variable or it is a variable x and is a free
variable in some term tj .

� A rewrite rule l → r defines a set of rewrites lR → rR for all replacements R.

l → r
redex contractum

� A redex can be substituted by its contractum in a context C⌈·⌋ for rewrite step C⌈t⌋ → C⌈t′⌋
� Rewrite steps can be concatenated into a series t0 → t1 → t2 → . . . tn. We can also write this as
t0 →∗ tn

� If l → r is a rule, then l is not a variable, or an application starting with a variable (e.g x F). Hence r
cannot introduce new variables

28

Term Rewriting System (TRS) Definition 7.2.2

⟨F ,X ,R⟩ of an alphabet
∑

In a rewrite rule r : F t1 . . . tn → r ∈ R.

� F ∈ F is the defined symbol of r.

� r defines F .

� For any Q ∈ F , if a rule defines it, it is a defined symbol, otherwise it is a constructor.

� TRS is turing-complete, however if lambda calculus is extended to include its pattern matching feature
the Church-Rosser property no longer holds (ordering of reduction rules changes the end term / no
longer confluent).

Definitions and Examples Example Question 7.2.1

Provide a set of rewrite rules for appending to a list, and mapping over the list.

F = {cons,nil, append,map}
X = {f, x, y, l, l′, l′′}

R =

append nil l → l
append (cons x l) l′ → cons x (append l l′)
append (append l l′) l′′ → append l (append l′ l′′)
map f nil → nil
map f (cons y l) → cons (f y) (map f l)

cons and nil are constructors, map and append are defined functions.

In a term rewriting system defined functions can appear in the terms (as well as the function position F in a rule
F t1 . . . tn → r).

Surjective Pairing Example Question 7.2.2

Is the following a valid TRS?
In-Left (Pair x y) → x
In-Right (Pair x y) → y
Pair (In-Left x) (In-Right x) → x

It is a valid TRS.

7.3 Type Assignment for TRS

Environment Definition 7.3.1

Given ⟨F ,X ,R⟩ there is environment E : F → Tc

TRS-Context Definition 7.3.2

A set of statements with variables as subjects.

(Ax) :
Γ, x : A; E ⊢ x : A

(Call) :
Γ; E , F : A ⊢ F : S A

(→ E) :
Γ; E ⊢ t1 : A→ B Γ; E ⊢ t2 : A

Γ; E ⊢ t1 t2 : B

Note that (Call) uses a substitution S on the type A. The environment provides the principle type for a function
symbol, a substitution can be used to get a specific instance of the principle type.

29

7.3.1 Principle Pair for a TRS term

Given some TRS ⟨F ,X ,R⟩ and environment E :

pp x E = ⟨x : φ;φ⟩ where φ is fresh

pp F E = ⟨∅;FreshInsstance(E F)⟩

pp (t1 t2) E = S⟨Π1 ∪Π2;φ⟩
where ⟨Π1;P1⟩ = pp t1 E

⟨Π2;P2⟩ = pp t2 E
S = unify P1 (P2 → φ)
φ is fresh

As a context can contain several statements for each variable, there ios not need to unify contexts Π1 and Π2 in the
principle type of (t1 t2).

Substitution is complete:

Γ; E ⊢ t : A⇒ ∃Π, P, S.[pp t E = ⟨Π;P ⟩ ∧ SΠ ⊆ Γ ∧ S P = A]

7.4 Subject Reduction

In order to ensure the subject reduction property, we must only accept rules l → r that satisfy:

∀R,Γ, A.[Γ; E ⊢ lR : A⇒ Γ; E ⊢ rR : A]

� l → r with defined symbol F is typeable with respect to E if there are Π, P and E such that:

pp l E = ⟨Π;P ⟩ ∧Π; E ⊢ r : P ∧ the leftmost occurrence of F is typed with E(F)

� ⟨F ,X ,R⟩ is typeable with respect to E if all r ∈ R are typeable with respect to E

Replacement Lemma

Given ⟨F ,X ,R⟩ is a TRS, with environment E . R is a replacement.

pp t E = ⟨Π;P ⟩ ∧ Γ; E ⊢ tR : A⇒ ∃S. [S P = A ∧ ∀x : C ∈ Π. [Γ, E ⊢ xR : S C]]

Given the principle type of t, any reduction is this type & context substituted.

Γ; E ⊢ t : A ∧ ∀x : C ∈ Γ. [Γ′; E ⊢ xR : C] ⇒ Γ; E ⊢ tR : A

If t : A and all variables when typed by Γ′ and replaced by R go to C, then tR : A

Subject Reduction Theorem

Given ⟨F ,X ,R⟩ is a TRS, with environment E .

All rules in R are typeable ⇒ (Γ; E ⊢ t : A ∧ t→ t′ ⇒ Γ; E ⊢ t′ : A)

Reduction does not change the type.

7.5 Combinatory Logic

Combinatory logic is an alternative approach to the λ-calculus to express computability.

� Developed around the same time as λ-calculus was developed by Church.

� A type of applicative TRS.

� Formal parameters of function symbols cannot have structure.

� The right hand side of term rewriting rules can only contain term-variables.

30

7.5.1 Syntax

Only permitted rules are:

K x y → x (removal of information)
S x y z → x z(y z) (distribution of information)

Terms are defined as:

t ::= K | S | t1 t2

We can also add implicit rule I = SKK as SKKx→ Kx(kx) → x

7.5.2 Extending CL

We can add a bracket abstraction to CL to extend it. By adding the rules on the left, we ca make the optimisations
on the right:

I x → x
K x y → x
S x y z → xz(yz)
B x y z → x(yz)
C x y z → xzy
W x y → xyy

S (Kx) (Ky) → K(xy)
S (Kx) I → x
S (Kx) y → Bxy
S x (Ky) Cxy

Adding these rules means that the structure of combinators is made precise (e.g S(Kx) (Ky) → K(xy) requires terms
of structure k t as arguments). This effectively adds pattern matching in, as we can now specify precise structures
for rules to match.

7.5.3 Type Assignment for CL

Type assignment is done with a basic inference system:

(S) :
Γ ⊢ S : (A→ B → C) → (A→ B) → A→ C

The S abstraction’s type is built in

(K) :
Γ ⊢ K : A→ B → A

The K abstraction’s type is built in

(I) :
Γ ⊢ I : A→ A

I is implied by SKK

(Ax) :
Γ, x : A ⊢ x : A

Typing variables

(→ E) :
Γ ⊢ t1 : A→ B Γ ⊢ t2 : A

Γ ⊢ t1 t2 : B

Application elimination

31

Chapter 8

Extensions to Type Systems

8.1 Data Structures

Tuples Structs/Data Classes/Records Combine data, equivalent to product.
Choice Enums/Variants/Tagged Unions Choose between variants of data.

8.1.1 Pairing

We extend the grammar of types to:
A,B ::= . . . | A×B|A+B

We can then extend the λ-calculus to:

E ::= . . . | ⟨E1E2⟩ | left(E) | right(E)

And can add the following rules to the curry’s type assignment system:

(Pair) :
Γ ⊢ E1 : A Γ ⊢ E2 : B

Γ ⊢ ⟨E − 1, E2⟩ : A×B
(left) :

Γ ⊢ E : A×B

Γ ⊢ left(E) : A
(right) :

Γ ⊢ E : A×B

Γ ⊢ right(E) : B

The reduction rules for left and right are as follows:

left ⟨E1, E2⟩ → E1

right ⟨E1, E2⟩ → E2

E → E′ ⇒

⟨E′, E2⟩ → ⟨E′, E2⟩
⟨E1, E⟩ → ⟨E1, E

′⟩
left(E) → left(E′)

right(E) → right(E′)

Here left and right are constructors (in the same spirit as seem with pattern matching), we could add a rule to
reconstruct tuples as below, but this would remove confluence (this is the surjective pairing mentioned in pattern
matching).

⟨left(E), right(E)⟩ → E

8.1.2 Disjoint Unions

We can then extend the λ-calculus to:

E ::= . . . | case(E1, E2, E3) | inj · l(E) | inj · r(E)

Here the unions can only be of two types, and case(expression, if A, if B) is a match/case of statement. inj is used
to construct the left or right type. And can add the following rules to the curry’s type assignment system:

(case) :
Γ ⊢ E1 : A+B Γ ⊢ E2 : A→ C Γ ⊢ E2 : B → C

Γ ⊢ case(E1, E2, E3) : C

(inj · l) :
Γ ⊢ E : A

Γ ⊢ inj · l(E) : A+B
(inj · r) :

Γ ⊢ E : B

Γ ⊢ inj · r(E) : A+B

32

The reduction rules for the new constructors are as follows:

case(inj · l(E1), E2, E3) → E2 E1

case(inj · r(E1), E2, E3) → E3 E1

E → E′ ⇒

case(E,E2, E3) → case(E′, E2, E3)

case(E1, E,E33) → case(E1, E
′, E33)

case(E1, E2, E) → case(E1, E2, E
′)

inj · l(E) → inj · l(E′)

inj · r(E) → inj · r(E′)

8.2 Recursive Types

Recursive types are required for many types of data structure (single linked lists, trees, other structures with un-
bounded size).

Unit Type Definition 8.2.1

A unit type is an empty type containing no data.

� Considered an empty tuple

� Supported by many languages (e.g Rust, Haskell)

To properly express recursive types, many programming languages include a unit type (to be used as the base
case for some recursive types).

(unit) :
Γ ⊢ () : unit

We can extend the grammar of types to:

A,B = . . . | X | µX.A

=µ is the smallest equivalence relation containing:

µX.A =µ A[µX.A/X]

lists Example Question 8.2.1

Define a singly linked list using the recursive types scheme described in this section.

[B] ≜ µX.unit+ (B ×X)

We can show this using =µ as:

[B] ≜ µX.unit+ (B ×X)
=µ (unit+ (B ×X))[µX.unit+ (B ×X)/X]
= (unit+ (B × µX.unit+ (B ×X)))
= (unit+ (B × [B]))

8.2.1 Equi-recursive Approach

(µ) :
Γ ⊢ E : A

Γ ⊢ E : B
(A =µ B)

Hence we can now type the list as:

Γ ⊢ () : unit
(unit)

Γ ⊢ inj · l() : unit + (B × [B])
(inj · l)

Γ ⊢ inj · l() : [B]
(µ)

. . .

Γ ⊢ E1 : B

. . .

Γ ⊢ E2 : [B]

Γ ⊢ ⟨E1, E2⟩ : B × [B]
(Pair)

Γ ⊢ inj · r⟨E1, E2⟩ : unit + (B × [B])
(inj · r)

Γ ⊢ inj · r⟨E1, E2⟩ : [B]
(µ)

33

This approach requires no explicit type annotations or declarations (full type inference is preserved)

Meaningless program have types, for example self application can be typed.

λx.x x : µX.X → φ

8.2.2 Iso-recursive Approach

Here syntactic markers for fold and unfold are added, recursive types are folded and unfolded on demand.

Disallows typing of self-application, as is the case with equi-recursive types.

The syntax is extended with:
E ::= . . . | fold(E) | unfold(E)

The following reduction rule is added:

unfold(fold(E)) → E E → E′ ⇒

{
unfold(E) → unfold(E′)

fold(E) → fold(E′)

We then must add the type assignment rules:

(fold) :
Γ ⊢ E : A[µX.A/X]

Γ ⊢ fold(E) : µX.A
(unfold) :

Γ ⊢ E : µX.A

Γ ⊢ unfold(E) : A[µX.A/X]

Γ ⊢ () : unit
(unit)

Γ ⊢ inj · l() : unit + (B × [B])
(inj · l)

Γ ⊢ fold(inj · l()) : [B]
(fold)

. . .

Γ ⊢ E1 : B

. . .

Γ ⊢ E2 : [B]

Γ ⊢ ⟨E1, E2⟩ : B × [B]
(Pair)

Γ ⊢ inj · r⟨E1, E2⟩ : unit + (B × [B])
(inj · r)

Γ ⊢ fold(inj · r⟨E1, E2⟩) : [B]
(fold)

8.3 Recursive Data Types

Rather than specifically use µ.X.A for fold/unfold, we can instead generalise to fold/unfold any type. This allows us
to build recursive data types.

(foldµX.A) :
Γ ⊢ E : A[µX.A/X]

Γ ⊢ foldµX.A(E) : µX.A
(unfoldµX.A) :

Γ ⊢ E : µX.A

Γ ⊢ unfoldµX.A(E) : A[µX.A/X]

We can hence create some identifier for a recursive type, and then use the relevant fold and unfolds for it.

A = unit + (B ×A) with identifier [A]

More generally a recursive data type is defined as C
⇀
φ = AC [

⇀
φ].

The syntax can be extended by:
E ::= . . . | foldC(E) | unfoldC(E)

We also add the reduction rules as:

unfoldC(foldC(E)) → E E → E′ ⇒

{
unfoldC(E) → unfoldC(E

′)

foldC(E) → foldC(E
′)

With type assignment rules:

(foldC) :
Γ ⊢ E : AC [

⇀

B]

Γ ⊢ foldC(E) : C
⇀

B
(unfoldC) :

Γ ⊢ E : C
⇀

B

Γ ⊢ unfoldC(E) : AC [
⇀

B]

for every type definition C
⇀
φ = AC [

⇀
φ].

34

Chapter 9

Intersection Types

We can extend the curry types with a new constructor ∩, and limit its use to the left-hand side of arrows.

To allow this we use a two-level grammar to define Ts (strict types)

A ::= φ | (σ → A)
σ ::= (A1 ∩ · · · ∩An) (n ≥ 0)

On Ts we define the relation ≤ as the smallest relation such that:

∀1 ≤ i ≤ n. [A1 ∩ · · · ∩An ≤ Ai] (n ≥ 1) The intersection is smaller than any contained type.
∀1 ≤ i ≤ n. [σ ≤ Ai] ⇒ σ ≤ A1 ∩ · · · ∩An (n ≥ 0) If smaller than all types, its smaller than intersection.
σ ≤ τ ≤ ρ⇒ σ ≤ ρ It is transitive.

We can define a relation ∼ on types (considered equals) as:

σ ≤ τ ≤ σ ⇒ σ ∼ τ

σ ∼ τ ∧A ∼ B ⇒ σ → A ∼ τ → B

Conventions:

� We will consider types modulo ∼.

�

⋂
nAi ≜ A1 ∩ . . . An

�

⋂
0Ai = ⊤ where ⊤ is used for subterms that will disappear during reduction (and hence we do not care about)

A statement is: M
subject

: σ
predicate

A context Γ is a set of statements with distinct variables as subjects (same as previously defined)

The relations for ≤ and ∼ can be extended to context by:

Γ ≤ Γ′ ⇔ ∀x : τ ∈ Γ′∃x : σ ∈ Γ. [σ ≤ τ]
Γ ∼ Γ′ ⇔ Γ ≤ Γ′ ≤ Γ

We can find the intersection of contexts as:

Γ1 ∩ Γ2 ≜ {x : σ ∩ τ |x : σ ∈ Γ1 ∧x : τ ∈ Γ2 } ∪
{x : σ |x : σ ∈ Γ1 ∧x ̸∈ Γ2 } ∪
{x : τ |x : τ ∈ Γ2 ∧x ̸∈ Γ1 }

Conventions:

�

⋂
n Γi ≜ Γ1 ∩ · · · ∩ Γn

� Γ ∩ {x : σ} = Γ ∩ x : σ

35

9.1 Type Assignment

Strict type assignment and strict derivations are defined through an inference system:

(Ax) :
Γ, x :

⋂
nAi ⊢∩ x : Ai

(n ≥ 1) (∩I) :
Γ ⊢∩ M : A1 . . . Γ ⊢∩ M : An

Γ ⊢∩ M :
⋂

nAi
(n ≥ 0)

(→ I) :
Γ, x : σ ⊢∩ M : B

Γ ⊢∩ λx.M : σ → B
(→ E) :

Γ ⊢∩ M : σ → B Γ ⊢∩ N : σ

Γ ⊢∩ M N : B

� The ∩I rule allows for ⊥

Generation Lemma

Γ ⊢∩ MN : A⇔ ∃σ ∈ Ts. [Γ ⊢∩ M : σ → A ∧ Γ ⊢∩ N : σ]

Γ ⊢∩ λx.M : A⇔ ∃σ,B. [A = σ → B ∧ Γ, x : σ ⊢∩ M : B]

Weakening

Γ ⊢∩ M : σ ∧ Γ ⊆ Γ′ ⇒ Γ′ ⊢∩ M : σ

Adding more variables to the environment (that are not free in the expression)

Strengthening

Γ ⊢∩ M : σ ⇒ {x : τ | x : τ ∈ Γ ∧ x ∈ fv(M)} ⊢∩ M : σ

As we can discard some types as ⊤ (”don’t care”) we can type some results where a discarded argument may not
be typeable, but is not part of the end result, so is ignored.

∅, y : ⊤, z : A ⊢∩ z : A
(Ax)

∅, y : ⊤ ⊢∩ λz.z : A→ A
(→ E)

∅ ⊢∩ λyz.z : ⊤ → A→ A
(→ E)

9.2 Subject Reduction and Normalisation

Γ, x :
⋂

nBi ⊢∩ x : B1
(Ax) . . .

Γ, x :
⋂

nBi ⊢∩ x : Bn
(Ax)

...
Γ ⊢∩ λx.M : (

⋂
nBi) → A

(→ I)

. . .

Γ ⊢∩ N : B1
. . .

. . .

Γ ⊢∩ N : Bn

Γ ⊢∩
⋂

nBi
(∩I)

Γ ⊢∩ (λx.M) N : A
(→ E)

In this system a variable can have more than one type, combined at an intersection using (∩I).

We can use an empty (∩I) to get a ⊤:

Γ ⊢M : ⊤
(∩I)

� Types are no invariant by η reduction.

�

9.3 Rank 2 and ML

It is possible to limit depth at which the intersection type constructor can be used.

� Rank n being usage up to a depth of n (rank 1 only allows intersection at the top).

� Rank 2 is enough to model ML’s let constructor.

36

Recall that in ML we require a let construct in type assignment:

(let) :
Γ ⊢ E1 : τ Γ, x : τ ⊢ E2 : B

let x = E1 in E2 : B

This is used for when we want a term of the form (λx.E2) E1m but cannot type as:

...

Γ ⊢ E1 : A[B/φ]

...

Γ ⊢ E1 : A[C/φ]
...

Γ ⊢ E2[E2/x] : D

For example if some term with a polymorphic type is used with two different types within an expression, we need to
type both separately.

By using Rank 2 types we can type and intersect as we can associate two types with E1:
Where Γ′ = Γ, x : A[B/φ] ∩A[C/φ]

Γ′ ⊢ x : A[B/φ]
(Ax)

Γ′ ⊢ x : A[C/φ]
(Ax)

...
Γ;⊢ E2 : D

Γ ⊢ λx.E2 : A[B/φ] ∩A[C/φ] → D
(→ I)

...

Γ ⊢ E1 : A[B/φ]

...

Γ ⊢ E1 : A[C/φ]

Γ ⊢ E1 : A[B/φ] ∩A[C/φ]
(∩I)

Γ ⊢ (λx.E2) E1 : D
(let)

9.4 Approximation Results

Approximation Theorem:
Γ ⊢∩ M : σ ⇔ ∃A ∈ AM. [Γ ⊢∩ A : σ]

� ⊤ can only appear in in the type of terms that are ⊥.

� The assigned type of M hence predicts part of the shape of the normal form of M .

� Type assignment with intersection types is undecidable.

Γ ⊢∩ M : σ ∧M ⊑M ′ ⇒ Γ ⊢∩ M
′ : σ

9.5 Characterisation of Head/Strong Normalisation

Head-Normalisation Definition 9.5.1

∃Γ, A. [Γ ⊢∩ M : A] ⇔M has head-normal form

A λ-term is in head normal form if it is an abstraction with a body that is not reducible

M is strongly normalisable ⇔ Γ ⊢∩ M : A ∧ ⊤ is not used in A

37

9.6 Principle Intersection Pairs

For approximant A ∈ A we can define the principle part of A

pp ⊥ = ⟨∅⊤⟩

pp x = ⟨x : φ,φ⟩ where φ is fresh

pp (λx.A) =

{
⟨Π′, σ → P ⟩ (Π′, x : σ = Π)

⟨Π,⊤ → P ⟩ (x ̸∈ Π)

where ⟨Π, P ⟩ = pp A

pp (xA1 . . . An) = ⟨
⋂

n Πi ∩ {x : P1 → · · · → Pn → φ}, φ⟩
where ⟨Πi, Pi⟩ = pp Ai

φ is fresh

Properties of pp

pp(A) = ⟨Π, P ⟩ ⇒ Π ⊢∩ A : P

∀A ∈ A. [A ̸= ⊥ ⇒ ∃Γ, B. [Γ ⊢∩ A : B]]

Pairs for Arbitrary Λ-Terms

We can define P as the set of all principle types of all approximants.

P = {⟨Π, P ⟩ | ∃A ∈ A(pp(A) = ⟨Π, P ⟩)}

Hence we can now define P(M) as the set of all principle pairs for all approximants of M :

P(M) = {pp(A) | A ∈ A(M)}

� If P(M) is finite then there is a pair ⟨Π, P ⟩ = ⊔P(M) such that ⟨Π, P ⟩ ∈ P (the principle pair of M).

� If P(M) is infinite then the principle pair of M is the infinite set of pairs P(M).

38

Chapter 10

Credit

Content

Based on the Type Systems course taught by Dr Steffen van Bakel.

These notes were written by Oliver Killane.

39

	Introduction
	Course Resources

	Lambda Calculus
	Introduction to Lambda Calculus
	Reduction Strategies
	Head Reduction
	Call By Name / Lazy
	Call By Value
	Normal Order
	Applicative Order
	Computability

	Normal Forms
	Approximation Semantics
	Properties of Approximants

	Explicit Lambda Calculus

	Curry Type Assignment
	Curry Type Assignment
	Important Lemmas For Type Assignment

	Principle Type Property
	Unification
	Curry Principle Pair

	Polymorphism
	Language N
	Type Assignment for N
	Principal Types for N

	Recursion
	Language NR
	Type Assignment for NR
	Principle Types for NR

	Milner's ML
	The ML Type Assignment System
	Term Substitution
	Reduction
	Type Assignment
	Lemmas for Type Assignment

	Milner's W
	Basic Cases
	Let Construct
	Fix Construct
	Application

	Polymorphic Recursion
	Mycroft-Style Assignment for NR
	Milner's and Mycroft's System's Differences

	Pattern Matching
	Syntax
	Reduction
	Type Assignment for TRS
	Principle Pair for a TRS term

	Subject Reduction
	Combinatory Logic
	Syntax
	Extending CL
	Type Assignment for CL

	Extensions to Type Systems
	Data Structures
	Pairing
	Disjoint Unions

	Recursive Types
	Equi-recursive Approach
	Iso-recursive Approach

	Recursive Data Types

	Intersection Types
	Type Assignment
	Subject Reduction and Normalisation
	Rank 2 and ML
	Approximation Results
	Characterisation of Head/Strong Normalisation
	Principle Intersection Pairs

	Credit

