
60029
Data Processing Systems
Imperial College London



Contents

1 Introduction 4
1.1 Logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Data Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Data Intensive Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Data Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Logical/Physical Data Model Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Transactional Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Read Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.5 Isolation levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.6 Declarative Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Relational Algebra 10
2.1 Relational Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Implementing Relational Algebra in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Cross Product / Cartesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.7 Group Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.8 Top-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Storage 18
3.1 Database Management System Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Buffer Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Storage Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Disk Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Algorithms and Indices 23
4.1 Sorting Algorithms (unassessed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Quicksort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Merge Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.3 Heapsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.4 Radix Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.5 Hybrid Sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Join Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Join Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Nested Loop Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.4 Sort Merge Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1



4.2.5 Hash Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Bucket Hashmap (Separate Chaining) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 Probing Hashmap (Open Addressing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.4 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.5 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.6 Hash Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.7 Bitmap Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.8 B-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.9 B+ Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.10 Foreign Key Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Processing Models 49
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Volcano Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.3 Operations Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Bulk Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 By-Reference Bulk Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Decomposed Bulk Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Optimisation 64
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1.1 Query Optimisers vs Optimising Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.2 Query Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Peephole Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.1 Avoiding Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.2 Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Classifying Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Logical Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4.1 Rule Based Logical Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.2 Cost Based Logical Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Physical Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5.1 Rule Based Physical Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5.2 Cost Based Physical Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 SparkSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Transactions 74
7.1 SQL Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1.1 ACID Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 Isolation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5 Concurrency Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.5.1 Serial Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.5.2 Two-Phase Locking (2PL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.5.3 Timestamp Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.4 Optimistic Concurrency Control (OCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.5 Multi-Version Concurrency Control (MVCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Streams 81
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Push Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.2.1 Naive Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2.2 PushBack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.3 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.3.1 In-Order Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3.2 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3.3 Aggregate Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2



8.3.4 Two Stacks Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.4 Stream Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.4.1 Handshake Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.4.2 Symmetric Hash-Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.4.3 Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9 Advanced Topics 93
9.1 Hardware and Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.2 CodeGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.2.1 Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.2.2 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.3 Adaptive Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.1 Cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.2 Hoare Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.3 Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3.4 Predicated Cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10 Credit 102

3



Chapter 1

Introduction

1.1 Logistics

Dr Holger Pirk

The module is taught by Dr Holger Pirk.

� Taught as prerecorded lectures with in-person Q&As

� Weekly tutorial sheets covered during the Q&A sessions

� One coursework in teams of 3 (with a competition!)

1.1.1 SQL

SQL is not prerequisite for this course!

The 40007 - Introduction to Databases module covers all that is required. This module is about the implemen-
tation of data processing systems, not using databases & SQL.

1.1.2 C++

C++ is not prerequisite for this course!

This course contains many code examples in C++. This course represents a great opportunity to learn at least a
small part of its enormity, and to apply some of this in the coursework.

C++ > C with classes Extra Fun! 1.1.1

C++ was originally developed around 1983 by Bjarne Stroustrup as ’C with classes’ and implemented as a
transpiler to C called cfront.

CppReference
Comprehensive C++ and standard template library

documentation.

Mastering CMake
CMake Documentation

4

https://holger.pirk.name/
https://www.doc.ic.ac.uk/~pjm/idb/
https://en.cppreference.com/
https://cmake.org/cmake/help/book/mastering-cmake/index.html
https://cmake.org/cmake/help/latest/


A tour of C++
An overview of C++, only need C
knowledge carried from pintos

Effective Modern C++
modern C++ exploration & best practices

The above books are available online from O’Reilly through Imperial (use institution login) for free & you may find
useful for learning more C++ (though beyond the understanding required for this module).

1.2 Data Management Systems

Database Definition 1.2.1

A large collection of organized data.

� Can apply to any structured collection of data (e.g a relational table, data structures such as vectors &
sets, graphs etc.)

System Definition 1.2.2

A collection of components interacting to achieve a greater goal.

� Usually applicable to many domains (e.g a database, operating system, webserver). The goal is domain-
agnostic

� Designed to be flexible at runtime (deal with other interacting systems, real conditions) (e.g OS with
user input, database with varying query volume and type)

� Operating conditions are unknown at development time (Database does not know schema prior, OS
does not know number of users prior, Tensorflow does not know matrix dimensionality prior)

Large & complex systems are typically developed over years by multiple teams.

Data Management System Definition 1.2.3

A system built to control the entire lifecycle of
some data.

� Creation, modification, inspection and dele-
tion of data

� Classic examples include Database Manage-
ment Systems

Data Processing System Definition 1.2.4

A system for processing data.

� Support part of the data lifecycle

� A strict superset of Data Management Sys-
tems (all data management systems are data
processing systems)

For example a tool as small as grep could be con-
sidered a data processing system.

Building data management systems is hard!

� Often must fetch data continuously from multiple sources

� Needs to be highly reliable (availability/low downtime & data retention)

5



� Needs to be efficient (specification may contain performance requirements)

Storage Needs to be persistent (but also needs to be fast)

Data Ingestions Needs to allow for easy import of data (e.g by providing a csv, another database’s url)

Concurrency To exploit parallelism in hardware (e.g multithreaded, distributed over several machines)

Data Analysis For inspection (typically the reason to hold data in for first place)

User Defined Functions Needs to allow users to write their own queries on data.

Standardized
Programming Model

Features are not implemented in an ad-hoc way but through common abstractions, users
and developers do not need to radically change how they approach a new feature.

Access Control Not all data is shared between all users.

Self-Optimization Monitors its own workloads in an attempt to optimise (e.g keeping frequently accessed
data in memory)

1.3 Data Intensive Applications

Data Intensive Application Definition 1.3.1

An application the acquires, stores and processes a significant amount of information. Core functionality of
the application is based on data.

Online Transaction Processing (OTP) Definition 1.3.2

High volume of small updates to a persistent database. ACID is important.

Goal: Throughput

Online Analytical Processing (OLAP) Definition 1.3.3

Running a single data analysis task. Mixture of query types. Queries are ad-hoc.

Goal: Latency

Reporting Definition 1.3.4

Running a set of data analysis tasks. Fixed time budget. Queries known in advance.

Goal: Resource Efficiency

Daily Struggle Example Question 1.3.1

Provide some examples of Reporting pattern being used in industry.

� A supermarket getting the day’s sales, and stock-take.

� A trading firm computing their position and logging the days trades at market-close and informing
regulators, clearing, risk department.

� A company’s payroll systems running weekly using week long timesheets.

Hybrid Transactional / Analytical Processing (HTAP)

� Small updates interwoven with larger analytics

� Need to be optimal for combination of small and large task sizes

6



HTAP Extra Fun! 1.3.1

HTAP is a relatively new pattern used to solve the need for separate systems to work on OTP and OLAP
workloads (which introduced complexity and cost as data is frequently copied between the two systems).
Read more here.

Data-Intensive Applications can be differentiated from Data Management Systems (though there is ample ambiguity):

� Applications are domain-specific, and hence contain domain-specific optimisations that prevent fully general-
purpose usage

� Data Management Systems are required to be highly generalised

� The cost of application specific data management (e.g developer time) outweighs any benefits for the majority
of cases

Model View Controller (MVC) Definition 1.3.5

A common design pattern separating software into components for user interaction (view), action (controller)
and storing state (model) which interact.

A typical data intensive application has the following architecture:

Big Business Extra Fun! 1.3.2

The enterprise data management systems market has been valued at $82.25 billion (2021) with annual growth
exceeding 10% (grand view research).

1.4 Data Management Systems

1.4.1 Non-Functional Requirements

Efficiency Ideally should be as fast as a bespoke, hand-written solution.
Resilience Must be able to recover from failures (software crashes, power failure, hardware failure)
Robustness Predictable performance (semantically small change in query ⇒ similarly small change in

performance)
Scalability Can scale performance with available resources.
Concurrency Can serve multiple clients concurrently with a clear model for how concurrency will affect

results.

1.4.2 Logical/Physical Data Model Separation

7

https://en.wikipedia.org/wiki/Hybrid_transactional/analytical_processing
https://www.grandviewresearch.com/industry-analysis/enterprise-data-management-market


1.4.3 Transactional Concurrency

Actions to be performed on a data management system can be wrapped up as a transaction to be received, processed
and committed.

ACID Definition 1.4.1

A set of useful properties for database management systems.

Atomic A transaction either runs entirely (and is committed) or has no effect. (All or nothing)
Consistent A transaction can only bring the database from one valid (for some invariants) state to

another. Note that there may be inconsistency between.
Isolated Many transactions run concurrently, however each leaves the database in some state

equivalent to running the transactions in some sequential order. (Run as if alone on the
system).

Durable Once a transaction is committed, it is persistent (even in case of failure - e.g power
failure).

”Isolated” is the most flexible ACID property, several isolation levels describe how concurrent transactions interact.
The more isolation is enforced, the more locking is required which can affect performance (contention & blocking).

Concurrency Controls Extra Fun! 1.4.1

In order to support efficient concurrent access & mutation of data without race conditions concurrency control
is used:

Lock Based Each object (e.g record, table) contains a lock (read-write) used for synchronisation of
access. The most common technique is two-phase locking .

Multiversion Each object and transaction is timestamped, by maintaining multiple timestamped
versions of an object a transaction can effectively operate on a snapshot of the database
at its own timestamp.

Concurrency control is discussed in detail in chapter 7.

1.4.4 Read Phenomena

You should already be familiar with some basic anomalies/phenomena, these include:

Dirty Read / Uncommitted Dependency Definition 1.4.2

A transaction reads a record updated by a transaction that has not yet committed.

� The uncommitted transaction may fail or be rolled back rendering the dirty-read data invalid.

8

https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Multiversion_concurrency_control


Non-Repeatable Read Definition 1.4.3

When a transaction reads a record twice with dif-
ferent results (another committed transaction up-
dated the row between the reads).

Phantom Reads Definition 1.4.4

When a transaction reads a set of records twice,
but the sets of records are not equal as another
transaction committed between the reads.

1.4.5 Isolation levels

Discussed in detail in chapter 7.

Serialisable Definition 1.4.5

Dirty Read Non-repeatable Read Phantom Read
Prevented Prevented Prevented

Execution of transactions is can be serialized (it is equivalent to some sequential history of transactions).

� In lock-based concurrency control locks are released at the end of a transaction, and range-locks are
acquired for SELECT ... FROM ... WHERE ... ; to avoid phantom reads.

� Prevents all 3 read phenomena and is the strongest isolation level.

Repeatable Reads Definition 1.4.6

Dirty Read Non-repeatable Read Phantom Read
Prevented Prevented Allowed

� Unlike serialisable Range locks are not used, only locks per-record.

� Write skew can occur (when concurrent transactions write to the same table & column using data read
from the table, resulting in a mix of both transactions)

Read Committed Definition 1.4.7

Dirty Read Non-repeatable Read Phantom Read
Prevented Allowed Allowed

Mutual exclusion is held for writes, but reads are only exclusive until the end of a SELECT ... ; statement,
not until commit time.

� In lock-based concurrency, write locks are held until commit, read locks released after select completed.

Read Uncommitted Definition 1.4.8

Dirty Read Non-repeatable Read Phantom Read
Allowed Allowed Allowed

The weakest isolation level and allows for all read phenomena.

1.4.6 Declarative Data Analysis

In order to make complex data management tools easier to use, a programmer describes the result they need declar-
atively, and the database system then plans the operations that must occur to provide the requested result.

This is present in almost all databases (e.g SQL & SQL derived languages).

9



Chapter 2

Relational Algebra

2.1 Relational Structures

2.1.1 Preliminaries

Schema Definition 2.1.1

A description of the database structure.

� Tables, names and types.

CREATE TABLE foo (bing INTEGER, zog TEXT, bar INTEGER);

� Integrity constraints (foreign keys, nullability, uniqueness etc)

ALTER TABLE foo ADD CONSTRAINT foo_key UNIQUE(bing);

Foreign Key Example Question 2.1.1

What is a foreign key constraint? Is it like a pointer?

It adds the invariant that there is a record referenced by the foreign key.

It is not really like a pointer as:

� Not in memory (e.g on disk, different machine etc)

� No constant lookup (a pointer can be dereferenced in constant time, but looking up a key in a table is
not necessarily)

Data structures used include:

Vector Ordered collection of objects (same type)
Tuple Ordered collection of objects (can be different types)
Bag Unordered collection of objects (same type)
Set Unordered collection of unique objects (same type)

10



Relation Definition 2.1.2

An array representing an n-ary relation R with the properties:

1. Each row is an n-tuple of R

2. Rows are unordered

3. All rows are unique / distinct

4. The order of columns corresponds to the order-
ing of the domains of R

5. Each column is labelled

They are almost equivalent to sets tuples (but include
labels).

The minimal set of operators required for the relational algebra are:

Project Select Cross/Cartesian product Union Difference
π σ × ∪ − or \

Relational algebra is closed:

� Every operator outputs a relation

� Operators are unary or binary

Query This! Example Question 2.1.2

Given the below structure, write a query to get the names of every book ordered by a current Customer in
relational algebra and SQL (you may ignore differences due to bag vs set semantics).

CREATE TABLE Book (

BookID INTEGER NOT NULL,

Title VARCHAR(20),

Author VARCHAR(20),

ISBN VARCHAR(13)

);

CREATE TABLE OrderedItem (

OrderID INTEGER NOT NULL,

BookID INTEGER NOT NULL

);

CREATE TABLE Order (

OrderID INTEGER NOT NULL,

CustomerID INTEGER NOT NULL,

Price DECIMAL(18,2)

);

-- Stores current customers

CREATE TABLE Customer (

CustomerID INTEGER NOT NULL,

ShippingAddress VARCHAR(50),

Name VARCHAR(20)

);

Πtitle(σOrderItem.BookID=Book.BookID(σOrderedItem.OrderId = Order.OrderID((

σOrder.CustomerID=Customer.CustomerID(σcustomerID=Holger(Customer)×Order))×OrderedItem)×Book))

SELECT Book.title

FROM (

(Customer NATURAL JOIN Order) NATURAL JOIN OrderedItem

) NATURAL JOIN Book

Note that this will produce duplicates (bag semantics), we can remove these using a SELECT DISTINCT.

11



Unique Addresses Example Question 2.1.3

Using the previous schema create a query to get each author that has only sold to one address (can potentially
ship to multiple customers at the same address)

ΠBook.Author(σcount=1(Γ(Customer.ShippingAddress),(Book.Author,count)(

ΠBook.Author,Customer.ShippingAddress(natural join(Customer,Order, orderItem,Book)))))

Here a natural join is:

natural join(R1, R2) ≜ σR1.x1=R2.x1∧...R1.xn=R2.xn
(R1 ×R2) where the xs are in both tables

SELECT Book.Author

FROM (

SELECT Book.Author, Customer.ShippingAddress

FROM ((Customer NATURAL JOIN Order) NATURAL JOIN OrderedItem) NATURAL JOIN Book

)

GROUP BY Book.Author

HAVING COUNT(*) = 1;

2.1.2 Nomenclatures

Expression A composition of operators
Logical Plan/Plan An expression.
Cardinality The number of tuples in a set.

2.1.3 Schemas

Database Schema Definition 2.1.3

The logical structure of the database that is exposed to users (e.g through SQL).

� defines the tables, their columns, relations, indexes and constraints in a database.

� In some systems (e.g postgres), can include permissions/access control, functions, views and more.

� Analogous to the type of the database.

� Does not describe the physical layout,

-- one postgres database can have many different schemas

CREATE SCHEMA my_schema;

CREATE TABLE foo(

id SERIAL PRIMARY KEY,

name VARCHAR(20) NOT NULL,

bestie SERIAL REFERENCES foo(id),

added_date DATE NOT NULL CHECK (added_date > '2000-01-01')

);

CREATE INDEX idx_added_date_desc ON people (added_date DESC);

12



2.2 Implementing Relational Algebra in C++

A note on types. . . Extra Fun! 2.2.1

Here we will express operators & relations in the C++ type system.

In real databases the schema & types are not know when the database itself is compiled, but rather
later at runtime (i.e do not know the types of columns, tables until they are created, amended, and operated
on at runtime).

In order to implement a model of relational algebra we will make use of several containers from the STL (standard
template library).

#include <set>

#include <array>

#include <string>

#include <tuple>

#include <variant>

using namespace std;

We will also make use of variadict templates/parameter packs to make our structures not only generic, but generic
over n types.

template<typename... some_types>

We will also create an operator to inherit from for all operator types:

template <typename... types> struct Operator : public Relation<types...> {};

2.2.1 Relation

template <typename... types> struct Relation {

// To allow relations to be composed, an output type is required

using OutputType = tuple<types...>;

set<tuple<types...>> data; // table records

array<string, sizeof...(types)> schema; // column names

Relation(array<string, sizeof...(types)> schema, set<tuple<types...>> data)

: schema(schema), data(data) {}

};

We can hence create a relation using the Relation constructor.

Relation<string, int, int> rel(

{"Name", "Age", "Review"},

{{ "Jim", 33, 3},

{ "Jay", 23, 5},

{"Mick", 34, 4}}

);

2.2.2 Project

Πa1, . . . , an︸ ︷︷ ︸
columns

(R)

A unary operator returning a relation containing only the columns projected (a1, . . . , an).

We can first create a projection.

template <typename InputOperator, typename... outputTypes>

struct Project : public Operator<outputTypes...> {

// the single input

13

https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.cppreference.com/w/cpp/language/parameter_pack


InputOperator input;

// a variant is a type safe union. It is either a function on rows, or a

// mapping of columns

variant<function<tuple<outputTypes...>(typename InputOperator::OutputType)>,

set<pair<string, string>>>

projections;

// Constructor for function application

Project(InputOperator input,

function<tuple<outputTypes...>(typename InputOperator::OutputType)>

projections)

: input(input), projections(projections) {}

// Constructor for column mapping

Project(InputOperator input, set<pair<string, string>> projections)

: input(input), projections(projections) {}

};

SQL vs RA Extra Fun! 2.2.2

The default SQL projection does not return a set but rather a multiset / bag. In order to remove duplicates
the DISTINCT keyword must be used.

2.2.3 Select

σpredicate(R)

Produce a new relation of input tuples satisfying the predicate. Here we narrow this to a condition.

enum class Comparator { less, lessEqual, equal, greaterEqual, greater };

struct Column {

string name;

// user must explicitly set string as a column (less chance of mistake)

explicit Column(string name) : name(name) {}

Column() = delete;

};

// type alias for comparable values

using Value = variant<string, int, float>;

struct Condition {

Comparator compare;

Column leftHandSide;

variant<Column, Value> rightHandSide;

Condition(Column leftHandSide, Comparator compare,

variant<Column, Value> rightHandSide)

: leftHandSide(leftHandSide), compare(compare),

rightHandSide(rightHandSide) {}

};

template <typename InputOperator>

struct Select : public Operator<typename InputOperator::OutputType> {

InputOperator input;

Condition condition;

14



Select(InputOperator input, Condition condition) : input(input), condition(condition) {};

};

Enums vs Enum classes Extra Fun! 2.2.3

enum class enum

Enumerations are in the scope of the class Enumerations are in the same scope as the enum
No implicit conversions. Implicit conversions to integers.

Enum classes are generally preferred over enums due to the above differences.

2.2.4 Cross Product / Cartesian

R1 ×R2

Creates a new schema concatenating the columns and with the cartesian product of records.

In order to concatenate the types of the product relations we create Concat<left types..., right types...>.

// declare the empty struct used to bind types

template <typename, typename> struct ConcatStruct;

// Table both types, create a type alias within the scope of ConcatStruct that

// concatenates the lists of types

template <typename... First, typename... Second>

struct ConcatStruct<std::tuple<First...>, std::tuple<Second...>> {

using type = std::tuple<First..., Second...>;

};

// expose the type alias outside of the scope of concatStruct

template <typename L, typename R>

using Concat = typename ConcatStruct<L, R>::type;

Template Magic Extra Fun! 2.2.4

If you are interested in how this works, see cppreference - template specialisation.

// Concat<> is used to concatenate the types from both input relations to

// produce a new schema

template <typename LeftInputOperator, typename RightInputOperator>

struct CrossProduct

: public Operator<Concat<typename LeftInputOperator::OutputType,

typename RightInputOperator::OutputType>> {

// The input relations

LeftInputOperator leftInput;

RightInputOperator rightInput;

CrossProduct(LeftInputOperator leftInput, RightInputOperator rightInput)

: leftInput(leftInput), rightInput(rightInput){};

};

2.2.5 Union

R1 ∪R2

The union of both relations, duplicates are eliminated.

template <typename LeftInputOperator, typename RightInputOperator>

struct Union : public Operator<typename LeftInputOperator::outputType> {

LeftInputOperator leftInput;

15

https://en.cppreference.com/w/cpp/language/template_specialization


RightInputOperator rightInput;

Union(LeftInputOperator leftInput, RightInputOperator rightInput)

: leftInput(leftInput), rightInput(rightInput){};

};

2.2.6 Difference

R1 −R2

Get the set difference between two relations.

template <typename LeftInputOperator, typename RightInputOperator>

struct Difference : public Operator<typename LeftInputOperator::outputType> {

LeftInputOperator leftInput;

RightInputOperator rightInput;

Difference(LeftInputOperator leftInput, RightInputOperator rightInput)

: leftInput(leftInput), rightInput(rightInput){};

};

2.2.7 Group Aggregation

Γ(grouping attributes),(aggregates)(R)

� Records are grouped by equality on the grouping attributes

� A set of aggregates are produced (either a grouping attribute, the result of an aggregate function, or output
attribute (e.g constants))

This is implemented by GROUP BY in SQL:

SELECT -- aggregates

FROM -- R

GROUP BY -- grouping attributes

// Aggregate functions to apply, 'agg' is for using groupAttributes

enum class AggregationFunction { min, max, sum, avg, count, agg };

template <typename InputOperator, typename... Output>

struct GroupedAggregation : public Operator<Output...> {

InputOperator input;

// the attributes to group by (column names)

set<string> groupAttributes;

// (column, aggregate function, new column name)

set<tuple<string, AggregationFunction, string>> aggregations;

GroupedAggregation(

InputOperator input, set<string> groupAttributes,

set<tuple<string, AggregationFunction, string>> aggregations)

: input(input), groupAttributes(groupAttributes),

aggregations(aggregations){};

};

2.2.8 Top-N

TopN(n,attribute)(R)

Get the top n records from a table, given the ordering of attribute

This is implemented with LIMIT and ORDER BY in SQL:

16



SELECT -- ...

FROM -- R

ORDER BY

// note that here we include N in the type (know at compile time), we could also

// take it as a parameter constructor (known at runtime)

template <typename InputOperator, size_t N>

struct TopN : public Operator<typename InputOperator::OutputType> {

InputOperator input;

string predicate;

TopN(InputOperator input, string predicate)

: input(input), predicate(predicate){};

};

Have a go! Extra Fun! 2.2.5

The provided examples are only one way to mock up / sketch relation algebra with C++. Consider:

� Using runtime polymorphism virtual methods in derived operator classes and std::variant data
types, rather than using templates.

� Going all-in on compile time programming with constexpr.

� Using concepts / requires to constrain the operator types.

17



Chapter 3

Storage

Great Exceptions! Extra Fun! 3.0.1

There are exceptions to many of the rules, implementation details discussed in this course. Most of the good
(and bad) ideas considered here have been implemented several ways.

3.1 Database Management System Kernel

Database Kernel Definition 3.1.1

The core of the database management system.

� Manages interaction with hardware (e.g I/O, memory management, operations)

� Library of functionality that implements physical plan & upwards.

� Provides an interface to access subsystems

Many often bypass the operating system to implement functionality usually associated with OS kernels.

18



3.2 Storage

3.2.1 Buffer Manager

Buffer Manager Definition 3.2.1

Part of the database kernel that manages disk-resident data, and moves disk resident data required by the
storage manager into pages in memory (the buffer pool).

3.2.2 Storage Manager

Multi-dimensional data must be stored in a 1-dimensional memory.

� Here we assume the tuples contain data types of a fixed size.

� Access latency of memory is determined by cache, hence locality is a key consideration.

� We need to consider the access pattern.

� Tables are externally represented as a set of tuples.

� We assume no concurrency for simplicity here.

Optimising for Cache Extra Fun! 3.2.1

The 60001 - Advanced Computer Architecture module by Prof Paul Kelly covers caches and access latency
in great depth.

Locality Definition 3.2.2

Average memory access latency is reduced using multiple levels of caches. These caches are designed to take
advantage of locality in memory accesses within a program.

Spatial Accessing nearby/-
contiguous locations.

A cache miss on a word results in entire line (typically larger than
a word) begin cached. Hardware prefetchers fetch lines adjacent
to misses.

Temporal Accessing the same
location.

Lines stay until evicted due to capacity or flush, load-store queues
effectively cache resent accesses.

N-ary Storage Definition 3.2.3

Tuples are stored adjacently.

� Good spatial locality on access to all fields in a tuple.

� Works well for lookups and inserts (common in OTP where transactions typically run on recent data)

19

https://github.com/OliverKillane/Imperial-Computing-Notes/tree/master/60001%20-%20Advanced%20Computer%20Architecture


Decomposed Storage Definition 3.2.4

Each field of the tuple is stored in a separate array.

� Good spatial locality when accessing one field of many tuples.

� Requires tuples to be reconstructed.

� Works well for scan-heavy queries (common in OLAP - aggregate, join and filtering)

Delta/Main Definition 3.2.5

A hybrid of n-ary and decomposed storage.

� Complicates some operations (e.g lookups)

� Regular migrations can reduce database availability at some points (lock up table to merge)

� Can be implemented as a pattern using two separate DBMS (transactional system and data warehouse).

3.2.3 Catalog

Catalog Definition 3.2.6

Keeps track of database structure (tables, view, indexes etc) and metadata (e.g which tables are sorted, dense)

Dense Definition 3.2.7

Records are both sorted and consecutive (e.g 3, 4, 5) in some field. Given fixed-size records and the minimum
value, records can be looked up in constant time.

3.2.4 Disk Storage

Disks differ from main memory:

Larger Pages Disks accessed in blocks. Main memory is to disk what cache is to main memory,
but with lines (pages) on the oder of kilobytes. For N-Ary storage each page
behaves like a mini-database.

Higher Latency Order of milliseconds rather than micro/nano seconds (main memory/cache).
Lower Throughput Megabytes per second versus gigabytes per second for main memory.
Accessed Through OS Programs must interact with OS for every read and write from disk through an

OS provided file abstraction (this can be negated & there are exceptions). File
size is limited, the DBMS must manage a pool of used files and determine offsets
to access data contained.

20



As a result disk IO often dominates DBMS costs. Small reductions from complex IO management strategies are
often more significant than any overhead they incur.

Buffer Manager Definition 3.2.8

Manages disk-resident data and manages data transfer to pages in memory.

� Unstructured files → structured tables

� Ensures fixed size for files.

� Safely writes data to disk when necessary (to ensure durability).

Unspanned Pages Definition 3.2.9

Records only allocated on the page is there is space.

� Space wasted (larger as tuple size increases)

� If the record size > page size, it is not possible to use this strategy

� Assuming there is a know fill factor (number of tuples allocated to each page) we can get fast random
lookup for the page a variable size tuple is on.

� If records are variable size, no constant time random access within a page.

Spanned Pages Definition 3.2.10

Records placed across page boundaries.

� Minimises wasted space

� Supports very large record sizes (larger than a page)

� Complex to implement, and reduced random access performance (with variable size tuples we cannot
determine the page a tuple is on in constant time)

� If records are variable size, no constant time random access within a page.

21



Slotted Pages Definition 3.2.11

To allow faster/constant time lookup for variable size records.

Header stores number of records, index of record used to look-up pointers at the end of the page which are
dereferenced to get the record.

Dictionaries Definition 3.2.12

Rather than store data (particularly variable-size) in-place it is allocated elsewhere, and a pointer used.

� Can eliminate duplication (duplicate attributes point to the same data)

� Need to be careful about managing space (e.g periodically removing unused dictionary entries / garbage
collection)

� Can reduce spatial locality (record points to non-adjacent dictionary entry), but can (sometimes) im-
prove temporal (same dictionary value accessed many times from many records)

In-Page Dictionary accesses from within the page do not require other pages to be loaded.
Globally more duplicates may exist & fewer records can be held per page.

Global A large global dictionary is used (access from other pages require loading).

22



Chapter 4

Algorithms and Indices

Play & Contribute! Extra Fun! 4.0.1

C++ implementations, tests and benchmarks for this section are included in the associated code directory
for this chapter.

4.1 Sorting Algorithms (unassessed)

4.1.1 Quicksort

#pragma once

#include <vector>

using namespace std;

template <typename T, bool comp(const T&, const T&)>

size_t partition(vector<T>& sort_vec, size_t start, size_t end) {

// select pivot

T pivot = sort_vec[start];

// find number of items before pivot ()

size_t count = 0;

for(size_t i = start + 1; i < end; i++) {

if (comp(sort_vec[i], pivot)) count++;

}

23



// move pivot to its final position

size_t pivotIndex = start + count;

swap(sort_vec[pivotIndex], sort_vec[start]);

size_t i = start, j = end - 1;

// partition by finding pairs of elements that can be swapped around the pivot

while(i < pivotIndex && j > pivotIndex) {

while(comp(sort_vec[i], pivot)) i++;

while(!comp(sort_vec[j], pivot)) j--;

if(i < pivotIndex && j >= pivotIndex) {

swap(sort_vec[i], sort_vec[j]);

i++;

j--;

}

}

return pivotIndex;

}

template <typename T, bool comp(const T&,const T&)>

void quicksort_helper(vector<T>& sort_vec, size_t start, size_t end) {

if(start + 1 >= end) return;

size_t p = partition<T, comp>(sort_vec, start, end);

quicksort_helper<T, comp>(sort_vec, start, p);

quicksort_helper<T, comp>(sort_vec, p + 1, end);

}

template <typename T, bool comp(const T&,const T&)> void quicksort(vector<T>& sort_vec) {

quicksort_helper<T, comp>(sort_vec, 0, sort_vec.size());

}

Average Complexity Worst-Case Complexity
O(n log n) O(n2)

Selecting a balanced pivot (ideally the median) is important to avoid worst-case complexity (where all others are
larger or smaller than the pivot). Sampling multiple possible pivots negates this, as do other hybrid sorts.

Quick On average typically faster than merge or heapsort.
In-Place Sort can be performed entirely in place (no extra memory required, good temporal

locality).
Parallel Is trivial to parallelise.

Worst-Case Avoiding O(N2)
Blind Does not take advantage of partially sorted data (in fact this can lead to worst-case

depending on pivot selection).

24



4.1.2 Merge Sort

#pragma once

#include <vector>

#include <iostream>

using namespace std;

template<typename T, bool comp(const T&,const T&)>

vector<T> mergesort_helper(const vector<T>& unsorted, size_t start, size_t end) {

if (end - start == 1) {

return {unsorted[start]};

} else {

// determine split

const size_t mid = (start + end) / 2;

// recursively mergesort

const vector<T> left_split = mergesort_helper<T, comp>(unsorted, start, mid);

const vector<T> right_split = mergesort_helper<T, comp>(unsorted, mid, end);

// merge splits

vector<T> merged;

merged.reserve(end - start);

// add largest to merged vector until one split is empty

size_t left_ptr = 0;

size_t right_ptr = 0;

while (left_ptr < left_split.size() && right_ptr < right_split.size()) {

const T& left = left_split[left_ptr];

const T& right = right_split[right_ptr];

25



if (comp(left, right)) {

merged.push_back(left);

left_ptr++;

} else {

merged.push_back(right);

right_ptr++;

}

}

// add empty split to vector, here only one loop iterates

while (right_ptr < right_split.size()) {

merged.push_back(right_split[right_ptr]);

right_ptr++;

}

while (left_ptr < left_split.size()) {

merged.push_back(left_split[left_ptr]);

left_ptr++;

}

return merged;

}

}

template<typename T, bool comp(const T&, const T&)> void mergesort(vector<T>& unsorted) {

if (unsorted.size() > 0) {

vector<T> sorted = mergesort_helper<T, comp>(unsorted, 0, unsorted.size());

swap(sorted, unsorted);

}

}

Average Complexity Worst-Case Complexity
O(n log n) O(n log n)

Worst-Case Same time complexity as best-case.
Parallel Is trivial to parallelise.

Out-of-Place Extra memory required for merges / cannot be done entirely in place & worse locality.
Blind Does not take advantage of partially sorted data.

Bring order to the galaxy! Extra Fun! 4.1.1

The provided simplistic mergesort allocates many vectors for out-of-place merging. Try and improve it!

� Reuse one scratch vector for out-of-place merging

� Don’t copy the single element splits at the merge sort’s base case.

� Predicate the merge process - see subsection 9.3.3.

26



4.1.3 Heapsort

27



#pragma once

#include <vector>

using namespace std;

// INV: we have a heap from heap[root+1:]

template<typename T, bool comp(const T&,const T&)>

void siftDown(vector<T>& heap, size_t root, size_t end) {

for (;;) {

size_t largest = root;

size_t left_root = 2 * root + 1;

size_t right_root = 2 * root + 2;

if (left_root < end && comp(heap[largest], heap[left_root]))

largest = left_root;

if (right_root < end && comp(heap[largest], heap[right_root]))

largest = right_root;

if (largest != root) {

swap(heap[largest], heap[root]);

root = largest;

} else {

break;

}

}

}

template<typename T, bool comp(const T&,const T&)>

void heapsort(vector<T>& unsorted) {

// Create a heap structure (parent is larger than both children)

for (size_t i = unsorted.size(); i > 0; i--) {

siftDown<T, comp>(unsorted, i - 1, unsorted.size());

}

// Take each element, and re-siftDown the heap

// - unsorted[0:i] is a heap

// - unsorted[i:] is sorted

for (size_t i = unsorted.size(); i > 1; i--) {

swap(unsorted[0], unsorted[i - 1]);

siftDown<T, comp>(unsorted, 0, i - 1);

}

}

Average Complexity Worst-Case Complexity
O(n log n) O(n log n)

Worst-Case Same time complexity as best-case.
Top-N If we only want to n largest items, heapsort can extract this without sorting the entire

array.
In-Place Sort can be performed entirely in place (no extra memory required, good temporal

locality).

Parallelism Difficult to parallelize.
Blind Does not take advantage of partially sorted data.

28



Bring order to the galaxy! Extra Fun! 4.1.2

There are parallelised heapsort implementations, such as https://arxiv.org/ftp/arxiv/papers/0706/0706.2893.pdf.

4.1.4 Radix Sort

A non-comparative sorting algorithm. Rather than comparing elements to determine an order, partition into buckets
based on some key (e.g digit).

Worst-Case Complexity
O(key width× radix)

Parallelism Trivially parallel.
In-Place In-place variants of the sort exist.

Inefficient on Small Data Often paired with another sort (e.g insertion sort) used when buckets are
small.

Lexicographical Only Data must have a lexicographical order (e.g integers)

4.1.5 Hybrid Sorts

Sorts can be combined to avoid worst-case weaknesses. A typical pattern is to pair quicksort with another sort switch
to to avoid quicksort’s poor worst-case complexity.

Pattern Defeating Quicksort A hybrid sort using quicksort’s fast average complexity, and heapsort’s good worst-
case complexity.

Multi-Pivot Quicksort For improved cache performance (a dual-pivot quicksort was used in Java 7).
Quick-Radix Sort Partitions based on bit (depth of recursion) of the key.
Timsort A combination of merge sort and insertion sort, originally developed for python.

4.2 Joins

Database Normalisation Definition 4.2.1

Structuring a relational database according to progressively stricter normal forms to remove redundant data,
and improve integrity (prevent potential logical inconsistency under insertion/update/deletion).
See wikipedia.

29

https://en.wikipedia.org/wiki/Database_normalization


4.2.1 Join Types

Normalised databases naturally require joins to re-compose data.

Join Definition 4.2.2

A join is a cross product with selection using data from both relations (σp(RA.x,RB .y)(RA ×RB)).

Inner Joins

Inner Join Definition 4.2.3

A join only returning rows from both tables which
satisfy a predicate/condition.

R1 R2

Natural Join Definition 4.2.4

Joining two tables with an implicit join clause (join
on equality on a column present in both tables

R1 ▷◁ R2

FROM R1 NATURAL JOIN R2

FROM R1 JOIN R2 USING(id)

Theta Join Definition 4.2.5

Joining two tables based on a condition/predicate
θ.

R1
θ
▷◁ R2

FROM R1, R2 WHERE theta(R1, R2)

FROM R1 JOIN R2 ON theta(R1, R2)

Equi Join Definition 4.2.6

A theta join with a single equivalence condition.
A natural join is an implicit equi join.

R1 ▷◁R1.x=R2.x

FROM R1, R2 WHERE R1.x = R2.x

Cross Join Definition 4.2.7

Just cartesian product with no selection.

R1 ×R2

FROM R1, R2

FROM R1 CROSS JOIN R2

Anti Join Definition 4.2.8

A theta join using an inequality predicate

R1 ▷◁R1.x<>R2.x R2

FROM R1 JOIN R2 ON R1.x <> R2.x

Outer Joins

Left Join Definition 4.2.9

R1
L
▷◁ R2

Returns all rows of R1 even if no rows in R2 match
(in which case columns are NULL).

R1 R2

FROM R1 LEFT JOIN R2 ON ...

Right Join Definition 4.2.10

R1
R
▷◁ R2

Returns all rows of R2 even if no rows in R1 match
(in which case columns are NULL).

R1 R2

FROM R1 RIGHT JOIN R2 ON ...

30



Full Outer Join Definition 4.2.11

R1
O
▷◁ R2 ≡ R1

L
▷◁ R2 ∪R1

R
▷◁ R2

Returns all rows from all tables matching, with rows from either R1 or R2 that do not have match associated
with NULL columns from the other table.

R1 R2

FROM R1 FULL OUTER JOIN R2 ON ...

FROM R1 FULL JOIN R2 ON ...

FROM (SELECT * FROM R1 LEFT JOIN R2 ON ... UNION SELECT * FROM R1 RIGHT JOIN R2 ON ...)

Which imposter? Example Question 4.2.1

Which of the following are joins?

1. SELECT R.r, S.s

FROM R, S

WHERE R.id = S.id;

2. SELECT R.r, S.s

FROM R, S

WHERE R.r = R.id

3. SELECT R.r

FROM R, S

WHERE R.id = S.id;

4. SELECT R.r

FROM R, S

WHERE R.r = "some string";

1. Join (Selects on both R and S)

2. Not a Join (Only selects on R)

3. Join (The σ selection is on R and S, so a join even if only R is projected)

4. Not a Join (Only selects on R)

4.2.2 Join Implementations

4.2.3 Nested Loop Join

We can implement a basic join naively using nested loops.

template <size_t leftCol, size_t rightCol, typename... TypesOne, typename... TypesTwo>

Table<TypesOne..., TypesTwo...> nested_loop_join(const Table<TypesOne...> &left, const Table<TypesTwo...> &right) {

auto result = join_empty<leftCol, rightCol>(left, right);

for (const auto &leftElem : left.rows) {

for (const auto &rightElem : right.rows) {

if (get<leftCol>(leftElem) == get<rightCol>(rightElem)) {

result.rows.emplace_back(tuple_cat(leftElem, rightElem));

}

}

}

return result;

}

31



Time Complexity =


Θ(|left| × |right|)

2
If elements unique

Θ(|left| × |right|) otherwise

Simple Easy to reason about (memory accesses & complexity)
Trivially Parallel Loop iterations are not dependent, so can be parallelised.
Sequential I/O Access is done in the order of the tables storage (sequential access better for both

memory & disk)

Performance Linear time complexity.

4.2.4 Sort Merge Join

If we assume both tables are sorted, and values (being joined on) are unique.

� Two cursors (one per table)

� Advance cursors in order, if the value on the left exceeds the right there can be no joins for the left row (and
vice versa).

template <size_t leftCol, size_t rightCol, typename... TypesOne, typename... TypesTwo>

Table<TypesOne..., TypesTwo...>

unique_sort_merge_join(const Table<TypesOne...> &leftT, const Table<TypesTwo...> &rightT) {

auto result = join_empty<leftCol, rightCol>(leftT, rightT);

// copy tables (so we can keep const, just reorder)

auto left = leftT;

auto right = rightT;

sort(left.rows.begin(), left.rows.end(), [](auto const &a, auto const &b) {

return get<leftCol>(a) < get<leftCol>(b);

});

sort(right.rows.begin(), right.rows.end(), [](auto const &a, auto const &b) {

return get<rightCol>(a) < get<rightCol>(b);

});

auto leftIndex = 0;

auto rightIndex = 0;

while (leftIndex < left.rows.size() && rightIndex < right.rows.size()) {

auto leftElem = left.rows[leftIndex];

auto rightElem = right.rows[rightIndex];

if (get<leftCol>(leftElem) < get<rightCol>(rightElem)) {

leftIndex++;

} else if (get<leftCol>(leftElem) > get<rightCol>(rightElem)) {

rightIndex++;

} else {

result.rows.emplace_back(tuple_cat(leftElem, rightElem));

leftIndex++;

rightIndex++;

}

}

return result;

32



Non-Unique Extra Fun! 4.2.1

A sort-merge that does not require uniqueness is included in this chapter’s code directory.

Time Complexity = Θ(sort(left)) + Θ(sort(right)) + Θ(merge)

= Θ(|left| × log |left|+ |right| × log |right|+ |left|+ |right|)

Sequential I/O In the merge phase
Inequality Works for joins using < and > instead of just equi-joins.

Tricky to Parallelize Sorts can be somewhat parallelised, but merge is sequential.

4.2.5 Hash Join

For equi joins we can insert one table into a hash table, then iterate over the second (assumed constant time lookup
in hashtable).

� Below we have used the standard template library’s unordered_map

� We assume each value in a table is unique, otherwise a unordered_multimap is required.

template <size_t leftCol, size_t rightCol, typename... TypesOne, typename... TypesTwo>

Table<TypesOne..., TypesTwo...> unique_hash_join(const Table<TypesOne...> &left, const Table<TypesTwo...> &right) {

auto result = join_empty<leftCol, rightCol>(left, right);

using leftColType = typename tuple_element<leftCol, tuple<TypesOne...>>::type;

// we should ideally choose the smallest table here -> smallest hashmap

unordered_map<leftColType, const tuple<TypesOne...> *> leftContents(left.rows.size());

for (const tuple<TypesOne...> &elem : left.rows) {

leftContents.insert(make_pair(get<leftCol>(elem), &elem));

}

for (auto &elem : right.rows) {

if (leftContents.contains(get<rightCol>(elem))) {

result.rows.emplace_back(tuple_cat(*leftContents[get<rightCol>(elem)], elem));

}

}

return result;

}

Θ(|build|+ |probe|)best case
O(|build| × |probe|)worst case

� The probing phase can be easily parallelised (hashtable is unchanged), however the build side is tricky to
paralleliuse efficiently.

Time Complexity (Assuming the lookup is constant time).
Hashing Need to avoid collisions, keep time calculating hash low, and be applicable to many

data types.

33



Space Complexity Requires building a hashtable structure (assumning the table was not stored
as this already). Best when one relation is much smaller than the other (use
smallest).

Expensive Hashing Some good hashing algorithms are expensive (potentially as many cycles as
multiple data accesses).

Bucket Based Hashmaps Extra Fun! 4.2.2

Many hashmaps are implemented as a table of buckets (linked lists of conflicting values).

� Called bucket-chaining/open addressing

� Poor lookup performance.

� Good insert performance (can prepend to bucket linked list on conflict).

4.3 Hash Tables

4.3.1 Hashing

A hash function is used to lookup keys in a hashmap.

template<typename K> using Hasher = size_t (const K&);

Requirement Pure no state/call with same value → same hash
Requirement Known Co-Domain Known range of values (co-domain also known as image/range).
Nicety Contiguous Co-Domain No gaps in range of output means few gaps holes in the table.
Nicety Uniform All hash values in the range are equally likely.

Typical Hashers Extra Fun! 4.3.1

MD5 Encodes any length string as a 128-bit hash.
Modulo-Division Very simple and fast.
MurmurHash A fast, non-cryptographic hash (on github).
CRC32 Cyclic Redundancy Check (common, non-cryptographic) and with hardware support on

some systems (also see usage of PCLMULQDQ on intel for acceleration here)

Hashes can collide, and hence we need a way to resolve this.

Hash it out Example Question 4.3.1

Write a basic Modulo-Division hash using the interface above provided. Take the modulus as a template
parameter.

template <size_t MODULUS> size_t modulusHash(const int& data) {

return static_cast<size_t>(data) % MODULUS;

}

4.3.2 Bucket Hashmap (Separate Chaining)

Collisions are resolved using linked-list buckets.

34

https://github.com/aappleby/smhasher
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf


Simple Easy to implement (no extra logic for collisions required, can just insert/delete from
linked list buckets).

Locality Linked list nodes are usually allocated separately, resulting in a random
access pattern on larger buckets.

template<typename K, typename V, Hasher<K> hasher>

class Buckets {

struct BucketNode {

K key;

V value;

BucketNode* next;

};

std::vector<BucketNode*> _buckets;

size_t _size;

const size_t _get_index(const K& key) const noexcept {

return hasher(key) % _buckets.size();

}

bool _resize_policy() const noexcept {

// if on average, more than two per bucket - resize.

// is this a good policy? ==> depends on (hasher, cost of resize)

return _size / _buckets.size() > 2;

}

void _resize() noexcept {

vector<BucketNode*> old_buckets(_buckets.size() * 2);

std::swap(old_buckets, _buckets);

for (auto& bucket : old_buckets) {

for (auto curr = bucket; curr;) {

BucketNode*& dest = _buckets.at(_get_index(curr->key));

BucketNode* next = curr->next;

curr->next = dest;

dest = curr;

curr = next;

}

}

}

public:

35



// INV: initial_buckets > 0

Buckets(size_t initial_buckets = 16) : _buckets(initial_buckets), _size(0) {}

bool insert(K key, V val) {

if (_resize_policy()) _resize();

BucketNode*& bucket = _buckets.at(_get_index(key));

for (const BucketNode* b = bucket; b; b = b->next) {

if (b->key == key) return false;

}

bucket = new BucketNode{ .key=std::move(key), .value=std::move(val), .next=bucket };

_size++;

return true;

}

V* find(const K& key) noexcept {

for (BucketNode* b = _buckets.at(_get_index(key)); b; b = b->next) {

if (b->key == key) return &b->value;

}

return nullptr;

}

bool contains(const K& key) const noexcept {

for (const BucketNode* b = _buckets.at(_get_index(key)); b; b = b->next) {

if (b->key == key) return true;

}

return false;

}

bool erase(const K& key) noexcept {

BucketNode*& first_node = _buckets.at(_get_index(key));

if (first_node) {

if (first_node->key == key) {

BucketNode* next_node = first_node->next;

delete first_node;

first_node = next_node;

_size--;

return true;

} else {

BucketNode* prev = first_node;

for (BucketNode* curr = prev->next; curr; prev = curr, curr = curr->next) {

if (curr->key == key) {

prev->next = curr->next;

delete curr;

_size--;

return true;

}

}

return false;

}

} else {

return false;

}

}

size_t size() const noexcept { return _size; }

friend std::ostream &operator<<(std::ostream &os, const Buckets<K, V, hasher> & ht) {

os << "Hash Table: " << type<Buckets<K, V, hasher>>() << endl;

os << "Size: " << ht.size() << endl;

36



os << "Buckets: " << ht._buckets.size() << endl;

for (size_t i = 0; i < ht._buckets.size(); i++) {

BucketNode* first_node = ht._buckets[i];

os << i << ": ";

if (first_node) {

for (BucketNode* b = first_node; b; b = b->next) {

os << "-> " << "{" << b->key << ":" << b->value << "}";

}

} else {

os << "<empty>";

}

os << endl;

}

return os;

}

static_assert(IsHashMap<Buckets, K, V>, "BucketMap is not a hashmap!");

};

Other Structures Extra Fun! 4.3.2

Balanced Tree If keys are ordered, then a self-balancing tree can provide log(n) lookup, po-
tentially better then a bucket based hashmap under many collisions (bucket
based hashmap can deteriorate into iterating over large lists).

Dynamic Perfect Hashing Each bucket is a second hashtable. Requires a perfect hash over k2 slots
(where the hashtables have k slots).

4.3.3 Probing Hashmap (Open Addressing)

Collisions are resolved by retrying on a new slot (determined by a probe).

We can define an interface for a probe using a concept.

template<typename State>

struct ProbeResult {

size_t hash;

State state;

};

template<typename K, typename Probe>

concept IsProbe = requires {

{

Probe::initial(std::declval<const K&>())

} noexcept -> std::same_as<ProbeResult<typename Probe::State>>;

{

Probe::collision(std::declval<const ProbeResult<typename Probe::State>&>())

37

https://en.wikipedia.org/wiki/Dynamic_perfect_hashing


} noexcept -> std::same_as<ProbeResult<typename Probe::State>>;

};

We can then implement different probes, ideally with the following qualities:

High Locality When detecting a conflict, the real key is close/same page/line.
Not too High! Very high locality will result in parts of the hash table being saturated, and long probe chains.
No Holes We want to avoid leaving holes/wasted memory (may be used by hash function, but if the

probing function never accesses, they are likely to never be used).

Linear Probing

Add some DISTANCE to the probe position, wrap around at the end of the buffer (here we assume the hashmap
structure modulates our output).

template<typename K, Hasher<K> hasher, size_t DISTANCE>

struct Linear {

struct State {}; // no state required for linear hashing

static ProbeResult<State> initial(const K& key) noexcept {

return { .hash=hasher(key), .state={} };

}

static ProbeResult<State> collision(const ProbeResult<State>& prev) noexcept {

return { .hash=prev.hash+DISTANCE, .state={} };

}

};

Simple Easy to reason about memory access pattern.
Locality Can alter DISTANCE to place values as adjacently as we need.

Long Probe-Chains From too much locality on adversarial input data (can input data to the
table to create worse case conflicts (and hence probe chain length) scenario)

Quadratic Probing

P, P + 12, P + 22, P + 32, . . . , P + n2, . . .

� Wrap around end of table.

� Variants exist (still use power of 2 but can include linear and constant term)

template<typename K, Hasher<K> hasher>

struct Quadratic {

struct State {

size_t original_hash;

size_t collisions = 0;

};

static ProbeResult<State> initial(const K& key) noexcept {

size_t hash = hasher(key);

return {

.hash=hash,

.state={ .original_hash=hash, .collisions=0 }

};

}

static ProbeResult<State> collision(const ProbeResult<State>& prev) noexcept {

size_t collisions = prev.state.collisions + 1;

return {

.hash=prev.state.original_hash + collisions * collisions,

.state={

38



.original_hash=prev.state.original_hash,

.collisions=collisions

}

};

}

};

Simple Easy to reason about memory access pattern.
Locality for first probes is good.

Conflicts Experiences conflicts in first probes where is it similar to linear.

Rehashing

In order to distribute nodes uniformly, use a has function to hash a conflicting position to find the next one.

template<typename K, Hasher<K> hasher, Hasher<size_t> reHasher>

struct ReHash {

struct State {};

static ProbeResult<State> initial(const K& key) noexcept {

return ProbeResult{ .hash=hasher(key), .state={} };

}

static ProbeResult<State> collision(const ProbeResult<State>& prev) noexcept {

return { .hash=reHasher(prev.hash), .state={} };

}

};

Simple To implement
Reuse Can potentially reuse the hashing function.

Locality is poor as probes distributed uniformly.
Conflict Probability is constant (every probe may conflict with another element).

Resizing

For the example above we have considered fixed-size hashmaps.

� Hashtables are typically overallocated by factor 2 (twice as many slots as expected input tuples).

� Table can be resized once it is larger than some capacity (will change hash of values, so must effectively rebuild
hashmap)

� When determining cost we amortise (spread cost of resize over all inserts & (for this module) assume this cost
is constant per insert).

For this reason, hash-joins (using hash tables) are best when one of the joined relations is much smaller than the
other.

39



Deleting with Markers

Probing Hashmap Implementation

struct Entry {

K key;

V val;

};

struct Deleted {

K key;

};

struct Empty {};

// entries are default constructed as Empty

std::vector<std::variant<Empty, Deleted, Entry>> _table;

size_t _size;

bool _resize_policy() const noexcept { return _size > _table.size() / 2; }

void _resize() noexcept {

// we know the old table has unique entries, and can take advantage of this

std::vector<std::variant<Empty, Deleted, Entry>> _old_table(_table.size() *

2);

std::swap(_old_table, _table);

for (auto &slot : _old_table) {

if (holds_alternative<Entry>(slot)) {

Entry &entry = std::get<Entry>(slot);

for (auto probe = Probe::initial(entry.key);;

probe = Probe::collision(probe)) {

auto &slot = _table.at(probe.hash % _table.size());

if (holds_alternative<Empty>(slot)) {

slot = std::move(entry);

break;

}

}

}

}

}

public:

// INV: initial_buckets > 0

Probing(size_t initial_capacity = 16) : _table(initial_capacity), _size(0) {}

bool insert(K key, V val) {

if (_resize_policy())

_resize();

for (auto probe = Probe::initial(key);; probe = Probe::collision(probe)) {

40



auto &slot = _table.at(probe.hash % _table.size());

if (std::holds_alternative<Empty>(slot) ||

std::holds_alternative<Deleted>(slot)) {

slot = Entry{.key = std::move(key), .val = std::move(val)};

_size++;

return true;

} else if (std::get<Entry>(slot).key == key) {

// key is already present

return false;

}

}

}

V *find(const K &key) noexcept {

for (auto probe = Probe::initial(key);; probe = Probe::collision(probe)) {

auto &slot = _table.at(probe.hash % _table.size());

if (std::holds_alternative<Empty>(slot)) {

// end of probe chain,

return nullptr;

} else if (std::holds_alternative<Deleted>(slot)) {

Deleted &deleted = std::get<Deleted>(slot);

if (deleted.key == key) {

// key was deleted, if reinserted, it would be here or earlier in the

// probe chain.

return nullptr;

}

} else if (std::holds_alternative<Entry>(slot)) {

// a key is present, check the key

Entry &entry = std::get<Entry>(slot);

if (entry.key == key) {

return &entry.val;

}

}

}

}

bool contains(const K &key) const noexcept {

for (auto probe = Probe::initial(key);; probe = Probe::collision(probe)) {

const auto &slot = _table.at(probe.hash % _table.size());

if (std::holds_alternative<Empty>(slot)) {

// end of probe chain,

return false;

} else if (std::holds_alternative<Deleted>(slot)) {

const Deleted &deleted = std::get<Deleted>(slot);

if (deleted.key == key) {

// key was deleted, if reinserted, it would be here or earlier in the

// probe chain.

return false;

}

} else if (std::holds_alternative<Entry>(slot)) {

// a key is present, check the key

const Entry &entry = std::get<Entry>(slot);

if (entry.key == key) {

return true;

}

}

}

}

bool erase(const K &key) noexcept {

for (auto probe = Probe::initial(key);; probe = Probe::collision(probe)) {

auto &slot = _table.at(probe.hash % _table.size());

41



if (std::holds_alternative<Empty>(slot)) {

// end of probe chain,

return false;

} else if (std::holds_alternative<Deleted>(slot)) {

Deleted &deleted = std::get<Deleted>(slot);

if (deleted.key == key) {

// key was deleted, if reinserted, it would be here or earlier in the

// probe chain.

return false;

}

} else if (std::holds_alternative<Entry>(slot)) {

// a key is present, check the key

Entry &entry = std::get<Entry>(slot);

if (entry.key == key) {

slot = Deleted{.key = std::move(entry.key)};

_size--;

return true;

}

}

}

}

size_t size() const noexcept { return _size; }

friend std::ostream &operator<<(std::ostream &os,

const Probing<K, V, Probe> &ht) {

os << "Hash Table: " << type<Probing<K, V, Probe>>() << endl;

os << "Size: " << ht.size() << endl;

os << "Slots: " << ht._table.size() << endl;

for (size_t i = 0; i < ht._table.size(); i++) {

const auto &slot = ht._table.at(i);

os << i << ": ";

std::visit(overloaded{

[&](const Entry &entry) {

os << "-> {" << entry.key << " : " << entry.val << "}";

},

[&](const Deleted &deleted) {

os << "<Deleted " << deleted.key << ">";

},

[&](const Empty &entry) { os << "<Empty>"; },

},

slot);

os << endl;

}

return os;

}

4.3.4 Partitioning

Sequential accesses are cheaper than random accesses, as they can access the same page in memory & thus share the
cost of the initially expensive cold access.

c = cost of page-in

n

pagesizeOS
× c = cost of sequentially accessing n elements

c

pagesizeOS
= cost of one access

In order to reduce the cost of accessing some data we can:

� Increase the page size (huge pages).

42



� Make the access pattern more sequential.

The access pattern for hashtables is typically random (often intentional by hash function).

Hashtable Thrashing Definition 4.3.1

Thrashing due to random access pattern associated with hashtable access, on a large hashtable.

� e.g high page IO when hash-joining two large relations, as the hashtable is too large to fit in the buffer
pool.

� As each partition can be joined independently, we can do one at a time, and hence each partition’s hash-join’s
hashtable can fit within the buffer pool.

� Alternatively, we could join all in parallel.

The partitioning function can be as simple as key mod No.Partitions.

4.3.5 Indexing

We can use a secondary store of redundant data to speed up queries.

� Denormalised (redundant) data is controlled by the DBMS.

� Can be created or removed without affecting the system (other than performance & storage space).

� Semantically invisible to the user (cannot change semantics of queries).

� Can be used to speed up data access of some queries (e.g avoiding having to build a hashtable in hash join as
it is already available).

� Occupy potentially considerable space.

� Must be maintained under updates.

� Must be considered by query optimiser.

43



Clustered/Primary Index Definition 4.3.2

An index storing all tuples of a table.

� Only one per table

� Can use more space than the table being indexed

� No redundant data / no duplicates within the index (only one copy for each tuple is indexed) (no
consistency issues)

Unclustered/Secondary Index Definition 4.3.3

Used to store pointers to tuples of a table.

� No limit on number of indexes

� Does not replicate data (the tuples pointed to in the table), but may replicate pointers (multiple pointers
in index to the same tuple in the table) (some consistency issues)

SQL Indexes

ANSI SQL supports the creation & destruction of indexes by the user.

CREATE INDEX index_name ON table_name (column_1, column2, ...);

DROP INDEX index_name;

� Unclear what type of index is created

� No control over parameters (e.g hash table size)

The standard has been extended by SQL implementations to allow for finer control.

The elephant in the room Extra Fun! 4.3.3

Among other DBMS, Postgres supports many types of index (documentation here)

/* By default CREATE INDEX uses a B-Tree */

CREATE INDEX name ON table USING HASH (column);

/* It is even possible to only index certain parts of a table using a WHERE clause */

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)

WHERE NOT (client_ip > inet '192.168.100.0' AND

client_ip < inet '192.168.100.255');

4.3.6 Hash Indexes

An index backed by a hash table.

44

https://www.postgresql.org/docs/current/indexes.html


Persistent hash tables may grow very large (overallocate) and need to be rebuilt to grow (can cause unexpected spike
when an insert causes a rebuild).

Aside from the normal pros/cons of hash tables in general:

Hash-Joins & Aggregation Perform well and remove build phase (provided they index on the columns
joining).

Equality Selection Can reduce number of candidate columns if not all columns are indexed

SELECT * FROM table_name WHERE column1 = some_value;

Limited Applicability Not useful for queries not using equality.

4.3.7 Bitmap Indexing

Bit Vector Definition 4.3.4

A sequence of 1 bit boolean values indicating some condition holds for indexes of another sequence.

BV==3([1, 2, 5, 6, 3, 2, 3, 4]) = [0, 0, 0, 0, 1, 0, 1, 0]

� Memory is byte addressable, and registers typically word-size (usually 32/64 bits).

� Some useful instructions (and compiler intrinsics) can be used.

� Can use SIMD instructions to operate on sections of a bitvector in parallel without using multithreading.

Bitmap Index Definition 4.3.5

A collection of bitvectors on a column (each for a distinct value in the column).

� Need one bitvector per distinct value in the column

� Bitvectors usually disjoint (column can only be one distinct value at one time)

size(rows, distinct values) =
rows× distinct values

8
bytes

On some systems we can create an index of arbitrary predicates, and to scan multiple bitmaps (using boolean
operators on them).

The CPU operates in word size chunks of the bitvector. Hence we can easily check if all bits in a word size chunk
(e.g 32 bits) are zero. We only need to iterate through this chunk if the chunk is non-zero.

#include <cstddef>

#include <cstdint>

#include <iostream>

#include <vector>

using namespace std;

45



// scans a vector of 32 bit ints:

// - indexes each integer from LSB(0) to MSB(31)

// - does not consider endian-ness

// 100... 100... <=> [1,1]

vector<size_t> scan_bitmap(const vector<uint32_t> &bitvector) {

vector<size_t> positions;

size_t index = 0;

for (auto elem : bitvector) {

for (size_t small_index = 0; elem; small_index++, elem >>= 1) {

if (elem & 1) {

positions.push_back(index + small_index);

}

}

index += 32;

}

return positions;

}

Bandwidth Can scan a column with reduce memory bandwidth (e.g integers → bitmap index is
32 times less).

Flexibility Can often use arbitrary predicates (e.g < x) to either turn a filter into a bitmap scan,
or reduce time to scan (if x < y an index < x and help with a < y filter).

Binned Bitmaps

When there is are a high number of distinct values, but we do not want many bitvectors, we can create several
bitvectors covering ranges of values.

� The bitvectors ranges need to cover the entire domain.

� Smaller range → more precise and more useful for queries concerning data in that range, at the cost of more
space used (more bitvectors)

� Not all ranges need to be the ame size, we can use the distribution of values to determine the ranges of the
bins.

The false-positive rate given a filter for z, and a bin of range (x, y) where x < x < y, what proportion of the 1s in
the bitvector are not for the value z.

Equi-Width Definition 4.3.6

width =
max(column)−min(column)

number bins

Split range into several equal size bins. Useful for
uniformly distributed (or near) data.

Height Binning Definition 4.3.7

All bins should contain the same number of values.

� Construction difficult (usually sort, deter-
mine quatiles on a sample)

� False-positive rate is value independent

� As table changes, may need to re-bin.

46



Run Length Encoding

4.3.8 B-Trees

Trees are well suited to the requirements of a database:

� Good complexity for equality lookups (log(n) tree traversal)

� Easy to update (hash-tables can require a resize and cause a load spike on insert)

Typical balanced tree data structures such as red/black trees, AVL trees are unsuited as they have low fan-out
(require a large number of traversals to node spread across many pages → many page faults occur to fetch only a
few nodes). Databases are I/O bound (here the I/O is page faults).

B-Tree Definition 4.3.8

A high fan-out, balanced tree.

� Each non-root node must contain at least

⌊
n− 1

2

⌋
key/value pairs.

� The tree is kept balanced (all leaves at same depth)

� Time complexity for search, insert and delete is O(log n)

4.3.9 B+ Trees

UNFINISHED!!!

47



Maintaining Balance

When a node overflows (full but value needs to be inserted), choose a splitting element and split values one either
side into new nodes.

UNFINISHED!!!

4.3.10 Foreign Key Indices

Most joins are using a foreign key relation.

� Constraint implies the number of matching tuples is 1 (foreign key → unique primary key)

� A foreign key indices effectively cache/save a join.

Cheap Use a small amount of space, only need to add an extra pointer when updating, no
extra optimisation effort needed (other than if an fk-index exists, use it).

Used Foreign key constraints usually are only created where users intend to join.

48



Chapter 5

Processing Models

5.1 Motivation

Processing Model Definition 5.1.1

A mechanism used to connect operators acting on data in a query.

� Choice is critical to database design.

Function Objects Definition 5.1.2

References to code that can be passed, invoked, change state and produce values. See these notes associated
code for more detail.

#include <functional>

std::function<int(int, int)> add = [ /* captures */ ](int a, int b) { return a + b; }

See C++11 Lambdas

� Can capture variables (value and references to) (also called closures).

� Used to implement single abstract method classes in some languages (e.g kotlin, java)

49

https://en.cppreference.com/w/cpp/language/lambda


5.2 Volcano Processing

Volcano Processing Model Definition 5.2.1

Data is fed chunk by chunk (row) through a tree of operators.

� Older design (influential in the 80s) with a focus on design practices over performance. At the time this
was an alternative to ad-hoc implementation.

� Uses non-relational physical algebra (specialized to be useful in expressing queries for a physical plan,
rather than as an abstraction for the programmer).

Easy to Implement Implementation is simple, adding new operators is easy (using operator
interface provided). Clean Object-Oriented Design.

I/O Behaviour As tuples are consumed as soon as they are produced, no waiting for I/O
to create and buffer the next tuple.

Lots of Calls! Function calls are expensive, virtual calls even more so! Operators work my virtual
calls to on parent operators per tuple, so the number of calls grows with the table size.

5.2.1 Operators

A basic interface for operators can be devised as:

template <typename T> struct Operator {

virtual void open() = 0;

virtual void close() = 0;

virtual std::optional<T> next() = 0;

};

In order to allow the greatest flexibility in using our operators, they are parameterised by typename T. In the
concrete examples this is set as a runtime tracked type Row which is variable size, and contains variants of int, char,
bool, etc.

We could also swap this out for a reference, or pointer to some runtime type to avoid copying.

50



But why not RAII Extra Fun! 5.2.1

To keep these examples explicit, an open() and close() are overriden, rather than using the constructor &
destructor.

That said RAII would be useful here:

� Automatically clean up after operators after they are dropped.

� Cannot be used before open/construction, or used after close/destruction.

Scan

Scans a table already loaded into memory to return its rows.

template <typename T> struct Scan : Operator<T> {

using TableType = std::vector<T>;

/* Many different operators can have a reference to and read the table.

* - shared_ptr drops table after it is no longer needed

* - must avoid copying very large table structure

*/

Scan(std::shared_ptr<TableType> t) : _table(t), _index(0) { assert(_table); }

/* No operation on open / close */

void open() override {}

void close() override {}

std::optional<T> next() override {

if (_index < (*_table).size()) {

return (*_table)[_index++];

} else {

return {};

}

}

Project

template <typename T, typename S> struct Project : Operator<T> {

using Projection = std::function<T(S)>;

Project(std::unique_ptr<Operator<S>> child, Projection proj)

: _child(move(child)), _proj(proj) {

assert(_child);

}

void open() override { _child->open(); }

void close() override { _child->close(); }

std::optional<T> next() override {

// Note: can be simplified with

// std::optional<A>::and_then(std::function<B(A)>) in C++23

auto next = _child->next();

if (next.has_value()) {

return _proj(next.value());

} else {

return {};

}

}

51



Select

template <typename T> struct Select : Operator<T> {

using Predicate = std::function<bool(T)>;

Select(std::unique_ptr<Operator<T>> child, Predicate pred)

: _child(move(child)), _pred(pred) {

assert(_child);

}

void open() override { _child->open(); }

void close() override { _child->close(); }

std::optional<T> next() override {

auto candidate = _child->next();

// keep getting candidates until there are no more, or one is valid.

while (candidate.has_value() && !_pred(candidate.value())) {

candidate = _child->next();

}

return candidate;

}

Union

template <typename T> struct Union : Operator<T> {

Union(std::unique_ptr<Operator<T>> leftChild,

std::unique_ptr<Operator<T>> rightChild)

: _leftChild(move(leftChild)), _rightChild(move(rightChild)) {

assert(_leftChild && _rightChild);

}

void open() override {

_leftChild->open();

_rightChild->open();

}

void close() override {

_leftChild->close();

_rightChild->close();

}

std::optional<T> next() override {

auto candidate = _leftChild->next();

if (candidate.has_value()) {

return candidate;

} else {

return _rightChild->next();

}

}

Difference

Pipeline Breaker Definition 5.2.2

An operator which can only produce its first value/output tuple after all inputs from one or more input
operators has been processed.

� Usually requires some kind of buffering (e.g with Difference).

Difference breaks the pipeline as we need to know all tuples from one side (the subtracting set) before we can
start to produce rows.

52



template <typename T> struct Difference : Operator<T> {

Difference(std::unique_ptr<Operator<T>> fromChild,

std::unique_ptr<Operator<T>> subChild)

: _fromChild(fromChild), _subChild(subChild), _subBuffer() {

assert(_fromChild && _subChild);

}

void open() override {

_fromChild->open();

_subChild->open();

// buffer all to subtract

for (auto candidate = _subChild->next(); candidate.has_value();

candidate = _subChild->next()) {

_subBuffer.push_back(candidate);

}

}

void close() override {

_fromChild->close();

_subChild->close();

}

std::optional<T> next() override {

auto candidate = _fromChild->next();

// keep gettihg next until there is no next candidate, or the candidate is

// not being subtracted

while (candidate.has_value() && _subBuffer.contains(candidate.value())) {

candidate = _fromChild->next();

}

return candidate;

}

private:

std::unique_ptr<Operator<T>> _fromChild, _subChild;

std::unordered_set<T> _subBuffer;

};

Cartesian/Cross Product

This can be optionally implemented as a pipeline breaker.

template <typename A, typename B>

struct BreakingCrossProduct : Operator<std::tuple<A, B>> {

BreakingCrossProduct(std::unique_ptr<Operator<A>> leftChild,

std::unique_ptr<Operator<B>> rightChild)

: _leftChild(move(leftChild)), _rightChild(move(rightChild)),

_leftCurrent(), _rightIndex(0), _rightBuffer() {

assert(_leftChild && _rightChild);

}

void open() override {

_leftChild->open();

_rightChild->open();

// set first left (can be none -> in which case next will never return

// anything)

_leftCurrent = _leftChild->next();

// buffer in the entirety of the right

for (auto candidate = _rightChild->next(); candidate.has_value();

candidate = _rightChild->next()) {

53



_rightBuffer.push_back(candidate.value());

}

}

void close() override {

_leftChild->close();

_rightChild->close();

}

std::optional<std::tuple<A, B>> next() override {

// instd::variant: _rightBuffer.size() > _rightIndex >= 0

if (_leftCurrent.has_value() && !_rightBuffer.empty()) {

auto next_val =

std::make_tuple(_leftCurrent.value(), _rightBuffer[_rightIndex]);

_rightIndex++;

if (_rightIndex == _rightBuffer.size()) {

_rightIndex = 0;

_leftCurrent = _leftChild->next();

}

return next_val;

} else {

return {};

}

}

private:

std::unique_ptr<Operator<A>> _leftChild;

std::unique_ptr<Operator<B>> _rightChild;

std::optional<A> _leftCurrent;

size_t _rightIndex;

std::vector<B> _rightBuffer;

};

A Non-pipeline breaking implementation has two phases:

1. Collecting rows from the right child operator, while using the same row from the left.

2. The right child operator has been exhausted, slowly get tuples from the left while traversing tuples collected
from the right.

template <typename A, typename B>

struct CrossProduct : Operator<std::tuple<A, B>> {

CrossProduct(std::unique_ptr<Operator<A>> leftChild,

std::unique_ptr<Operator<B>> rightChild)

: _leftChild(move(leftChild)), _rightChild(move(rightChild)),

_leftCurrent(), _rightBuffered(), _rightOffset(0) {

assert(_leftChild && _rightChild);

}

void open() override {

_leftChild->open();

_rightChild->open();

_leftCurrent = _leftChild->next();

}

void close() override {

_leftChild->close();

_rightChild->close();

}

54



std::optional<std::tuple<A, B>> next() override {

/* invariants:

* - _leftCurrent is already set

* - if there are no more _rightChild to get, then we are iterating over the

* _leftChild

*/

auto rightCandidate = _rightChild->next();

if (rightCandidate.has_value()) {

// still getting content from the right had side

_rightBuffered.push_back(rightCandidate.value());

} else if (_rightOffset == _rightBuffered.size()) {

// all tuples have been taken from right hand side, now using buffer

_leftCurrent = _leftChild->next();

_rightOffset = 0;

}

// only return if both sides have values

if (_leftCurrent.has_value() && !_rightBuffered.empty()) {

// get tuple and increment _rightOffset

return std::make_tuple(_leftCurrent.value(),

_rightBuffered[_rightOffset++]);

} else {

return {};

}

}

private:

std::unique_ptr<Operator<A>> _leftChild;

std::unique_ptr<Operator<B>> _rightChild;

std::optional<A> _leftCurrent;

std::vector<B> _rightBuffered;

size_t _rightOffset;

};

Group Aggregation

This is fundamentally a pipeline breaker, and must buffer rows prior to next(). The algorithm acts in three phases:

1. Buffer tuples from the child.

2. Get the key (column being grouped by e.g GROUP BY column1) and aggregation (e.g SELECT MAX(column2))
and place in a hashmap.

3. Finally provide rows through next()

/* We use the template to determine the hash and nextSlot implementations used

* T -> type of data provided by the child

* S -> data output by the groupBy & aggregation

* K -> the type grouped on, produced by a grouping function (K group(T))

* hash -> a function to convert a key into a hash

* nextSlot -> to determine next slot in collisions

*/

template <typename T, typename S, typename K, size_t nextSlot(size_t),

size_t hashFun(K), size_t OVERALLOCATE_FACTOR = 2>

struct GroupBy : Operator<S> {

using Aggregation = std::function<S(std::optional<S>, T)>;

using Grouping = std::function<K(T)>;

GroupBy(std::unique_ptr<Operator<T>> child, Grouping grouping,

Aggregation aggregation)

: _child(move(child)), _grouping(grouping), _aggregation(aggregation),

_hashTable(), _hashTableCursor(0) {

55



assert(_child);

}

void open() override {

_child->open();

std::vector<T> childValues;

for (auto currentVal = _child->next(); currentVal.has_value();

currentVal = _child->next()) {

childValues.push_back(currentVal.value());

}

_hashTable = std::vector<std::optional<std::pair<K, S>>>(

childValues.size(), std::optional<std::pair<K, S>>());

for (T val : childValues) {

K key = _grouping(val);

size_t slot = hashFun(key) % _hashTable.size();

while (_hashTable[slot].has_value() &&

_hashTable[slot].value().first != key) {

slot = nextSlot(slot) % _hashTable.size();

}

// slot is now correct, either a value present with the same key, or none.

auto prev_val = _hashTable[slot].has_value()

? _hashTable[slot].value().second

: std::optional<S>();

_hashTable[slot] = std::optional<std::pair<K, S>>(

std::make_pair<K, S>(move(key), _aggregation(prev_val, val)));

}

// all values moved into the hashtable, so std::vector deallocated

}

void close() override { _child->close(); }

std::optional<S> next() override {

while (_hashTableCursor < _hashTable.size()) {

auto slot = _hashTable[_hashTableCursor];

_hashTableCursor++;

if (slot.has_value()) {

return slot.value().second;

}

}

return {};

}

private:

Aggregation _aggregation;

Grouping _grouping;

std::unique_ptr<Operator<T>> _child;

std::vector<std::optional<std::pair<K, S>>> _hashTable;

size_t _hashTableCursor;

};

Operators Composed

We can finally define types to use with our operators.

using Value = variant<int, char, bool>;

using Row = vector<Value>;

56



using Table = vector<Row>;

And now build a query from them

SELECT table.1, MAX(table.0) FROM table GROUP BY table.1;

std::shared_ptr<Table> data = std::make_shared<Table>(Table{

{1, 'c', true},

{1, 'd', true},

{1, 'c', false},

{2, 'c', false},

{5, 'c', false},

{3, 'e', false}}

);

auto scan = std::make_unique<Scan<Row>>(data);

// Group by for single column

auto groupBySecondCol = [](Row r) { return r[1]; };

auto aggregateSecondCol = [](std::optional<Row> r1, Row r2) {

if (r1.has_value()) {

return Row{std::max(std::get<int>(r1.value()[0]), std::get<int>(r2[0])),

r2[1]};

} else {

return Row{r2[0], r2[1]};

}

};

GroupBy<Row, Row, Value, nextSlotLinear, hashValue> groupby(

std::move(scan), groupBySecondCol, aggregateSecondCol);

groupby.open();

for (auto val = groupby.next(); val.has_value(); val = groupby.next())

{

cout << val.value() << endl;

}

groupby.close();

[ 3 e]

[ 5 c]

[ 1 d]

Run it! Extra Fun! 5.2.2

The above code is provided with examples in the associated notes repository!

57



5.2.2 Pipelining

IO Operations

As some operations require buffering, we need to determine how much buffer is required, if this can fit in memory
(or disk I/O required), and in which operators.

� If all buffers in a fragment fit in memory, there is no I/O

� Otherwise: sequential access → number of occupied pages, random access/out of order → one page I/O per
access (an upper bound & almost certainly an over estimate)

Buffer size depends on the operator, we assume spanned pages are used:

� Sorted relations, nested loop buffers → same size as input

� Hashtables have an over-allocation factor (if not known → assume 2)

Finally we assume we know the cardinality of operator inputs and outputs, and the buffer pool size.

Basic GroupBy Example Question 5.2.1

CREATE TABLE Customer (

id i32,

name STRING, -- Key into compressed dictionary

address STRING, -- Key into compressed dictionary

nation i32,

phone i32,

accNum i32

);

� Customer has 10, 000 tuples

� Strings are represented by a 32 bit integer key into a compressed dictionary.

� σid>250 has 30% selectivity.

� Γ(id),(count) has grouping cardinality of 9

� Page size is 64 B

� Buffer pool is 512 KB

1. Scan(Customer):

size(Customer) = (6× 4)× 10, 000 = 240, 000 ⇒ pages(Customer) =

⌈
240, 000

64

⌉
= 3, 750

58



� Scan reads sequentially, so cost(Scan(Customer)) = 3, 750 I/O operations.

� Not a pipeline-breaker, so only needs 1 tuple at a time, so no buffer allocation required.

2. σid<250(. . . )

� Not a pipeline breaker, so no need to buffer.

� No IO costs as child Scan operation passes tuple in memory.

3. Γ(id),(count)

For the grouping we assume a hashtable overallocation factor of 2, the table contains count and grouping
attribute (id).

size(GroupBy hashtable) = 2× ((2× 4)× 9) = 144

CPU Efficiency

Not all function calls are equal. Extra Fun! 5.2.3

A jump to a function pointer (e.g a std::function, virtual method or OUT (*function_ptr)(A, B, ...))
is expensive.

� A combined data & control hazard. The address must be known in order to jump, the next instruction
after the jump cannot be known until the jump is done.

� There are ways to reduce the stall in hardware (reducing length of pipeline frontend to reduce possible
stall cycles, jump target prediction & speculation, delayed jump (allow other work to be done in what
would have been stall cycles))

� In software we could load the address to a register many instructions before the jump, and do other
useful work between, but often there is little other work to be done.

To avoid this cost:

� Jump to an immediate value (typically pc-relative immediate offset in the jump instruction), as the
jump location is part of the instruction, there is no hazard. But the function to jump to must be known
at compile time. Still affects returns (jump to link register/return address register) (though this should
be very fast due to return-address stack branch predictors).

� Determine the function to call at compile time (jump to label in asm → jump to immediate pc-relative
address). This is still costly (depending on calling convention), so we can go further an inline.

� Do fewer of these calls to function pointers/virtuals.

For each operation we can count the function calls per tuple.

Scan 0 Tuples read straight from buffer.
Select/σ 2 Call to read input, call to apply predicate.
Project/Π 2 Call to read input, call to projection.
Cross Product (Inner & Outer) 1 Call to read input.
Join 1 Call to read input (comparison and hash can be inlined).
Group-By 2 Read input and call aggregation function.
Output 1 Call to read input and extract to output.

59



5.2.3 Operations Calculations

Selective Example Question 5.2.2

CREATE TABLE table (

a INTEGER,

b INTEGER,

c INTEGER

);

-- note a, b and c are uniform randomly distributed [1-16] inclusive

INSERT INTO table VALUES /* ...10 million rows*/ ;

-- Evaluate the following query for pageIO and function calls under volcano processing.

SELECT sum(c) FROM table WHERE a = 11 and b = 7;

If we assume the WHERE can be done with a single selection, and selection predicate.

5.3 Bulk Processing

Bulk Processing Definition 5.3.1

Queries are processed in batches.

� Turn control dependencies to data dependencies.

� Apply operator to a buffer of tuples, copy or pass references to buffers between operators.

� Reduces the number of function calls (e.g 1 per tuple per operator → 1 per operator).

For example a basic select operator could be implemented on an Nary Table:

60



� Rather than calling select predicate, provide operators for common predicates (e.g equality)

� Can implement for decomposed storage layout.

template <typename V> using Row = vector<V>;

template <typename V> using Table = vector<Row<V>>;

template <typename V>

size_t select_eq(Table<V> &outputBuffer, const Table<V> &inputBuffer, V eq_value, size_t attribOffset) {

for (const Row<V> &r : inputBuffer) {

if (r[attribOffset] == eq_value) {

outputBuffer.push_back(r);

}

}

return outputBuffer.size();

}

Bulking up Example Question 5.3.1

Translate the following to use the select_eq implementation above.

CREATE TABLE Orders (orderId int, status int, urgency int);

SELECT PendingOrders.* FROM (

SELECT *

FROM Orders

WHERE status = PENDING

) AS PendingOrders

WHERE PendingOrders.urgency = URGENT;

enum Urgency { URGENT, NOT_URGENT, IGNORE };

enum Status { COMPLETE, IN_PROCESS, PENDING };

Table<int> Orders{

{1, COMPLETE, IGNORE},

{2, PENDING, IN_PROCESS},

{3, PENDING, URGENT},

{4, PENDING, URGENT},

};

Table<int> PendingOrders, UrgentAndPendingOrders;

select_eq<int>(PendingOrders, Orders, PENDING, 1);

select_eq<int>(UrgentAndPendingOrders, PendingOrders, URGENT, 2);

For determining the number of IO operations, bulk operators read all input pages sequentially, and writes to output
sequentially.

Bulk Selection Example Question 5.3.2

Compute an estimate of the IO operations for the previous example’s query.

� Selectivity of both σ is 25%

� 1, 000, 000 tuples

� Each tuple contains 3 32 bit integers

� 512 KB cache with 64 B pages

61



1. Load Page

size(Orders) = 1, 000, 000× (3× 4) = 12, 000, 000 ⇒ pages(Orders) =

⌈
12, 000, 000

64

⌉
= 187, 500

Hence 187, 500 IO actions

2. σstatus=PENDING

size(PendingOrders) = 250, 000× (3× 4) = 3, 000, 000

⇒ pages(PendingOrders) =

⌈
3, 000, 000

64

⌉
= 46, 875

Hence given the input buffer, there are 46, 875 output IO actions.

3. σurgency=URGENT

size(PendingAndUrgentOrders) = 62, 500× (3× 4) = 750, 000

⇒ pages(PendingAndUrgentOrders) =

⌈
750, 000

64

⌉
= ⌈11, 718.75⌉ = 11, 719

Hence given the input buffer, there are 11, 719 output IO actions.

Hence in total there are 187, 500 + 46, 875 + 11, 719 = 246094 IO actions.

5.3.1 By-Reference Bulk Processing

By-Reference Bulk Processing Definition 5.3.2

Copying is expensive, so instead of copying rows an identifier/reference is used.

� There is overhead associated with indirection of a reference

� Produced tables can contain many ids out of order & lookups result in random access pattern.

// Candidates are indexes into an underlying table

using Candidates = vector<uint32_t>;

// To add all rows of a table to some candidates.

template<typename V>

size_t add_candidates(const Table<V>& underlyingBuffer, Candidates& outputRows) {

for (uint32_t i = 0; i < underlyingBuffer.size(); i++) {

outputRows.push_back(i);

}

return outputRows.size();

}

// An by-reference bulk processing implementation of select

template<typename V>

size_t select_eq(const Table<V>& underlyingBuffer, Candidates& outputRows,

const Candidates& inputRows, V eq_value, size_t attribOffset) {

for (const uint32_t index : inputRows) {

if (underlyingBuffer[index][attribOffset] == eq_value) {

outputRows.push_back(index);

}

}

return outputRows.size();

}

We can then demonstrate the previous example with the following query

62



Candidates OrdersCandidates, PendingOrders, UrgentAndPendingOrders;

add_candidates(Orders, OrdersCandidates);

select_eq<int>(Orders, PendingOrders, OrdersCandidates, PENDING, 1);

select_eq<int>(Orders, UrgentAndPendingOrders, PendingOrders, URGENT, 2);

Page Access Probability

When estimating page IO we must consider access to candidates:

� Access to candidate vectors can result in page IO.

� Indexes from candidate vectors are ordered, but may be spread across the underlying table’s pages.

Probability of a page being touched, given s selectivity of tuples and n tuples per page.

p(s, n) = 1− (1− s)n︸ ︷︷ ︸
no tuples accessed

Hence for a selection:

PageFault = p(s, n)× pages(underlying)where

s = selection selectivity

n =
page size

tuple size

5.3.2 Decomposed Bulk Processing

Decomposed storage was introduced as a consequence of bulk processing:

� By storing columns contiguously, page faults are reduced by accessing a column.

� Reduces pressure on space occupied by underlying table in buffer pool/cache (only need relevant columns
loaded).

IO Operations

We must adapt the scheme used for by-reference bulk processing to account of decomposed storage.

� Only need to consider the size of the data in the column being accessed.

Bulk Columns Example Question 5.3.3

UNFINISHED!!!

63



Chapter 6

Optimisation

6.1 Motivation

”Users expect miracles! . . .Data management systems can actually accommodate some . . . - Holger Pirk”

� Users want zero-overhead, the system should be as fast as hand-written & optimised code.

� The database is expected to learn from data (e.g second run of a query is faster)

� System must be highly flexible (users can create relations, indices, build complex queries without needing to
upgrade/reconfigure/recompile any part of the DBMS)

In reality current DBMS generally succeed in meeting these miraculous expectations.

6.1.1 Query Optimisers vs Optimising Compilers

A query optimiser is similar to a compiler’s optimiser:

� Representation of code is transformed through several representations, some logical (e.g AST, three address
code), some physical (e.g x86 specific IR, assembly representation)

� Correctness under optimisations (primary objective), performance of optimiser queries (secondary objec-
tive).

� Limitations on time to optimise (i.e developers don’t want to wait excessively long to compile simple programs)

The main difference is timing of access to code and input data.

Code/Query Input Data
Compiler Optimiser At compile time Unknown
Query Optimiser At query time Known before query

Profile Guided Optimisation Extra Fun! 6.1.1

A compiler optimiser (at compile) does not have access to the input data (at runtime). However this is not
entirely technically true. We can compile an instrumented version of the code, run with some representative
input data, profile and provide this feedback to the compiler to guide optimisation.

g++ -fprofile-generate myprog.cpp # Compile instrumented version

./myprog.cpp # Generates myprog.gcda

g++ -fprofile-use myprog.cpp # Use profile when optimising

Correctness is difficult.

� ANSI SQL semantics are not formally defined (though some have been developed).

� Need to test against complex queries, numerous edge cases, with many combinations of optimisations (much
the same as with compiler’s optimisers).

64

https://dl.acm.org/doi/10.1145/111197.111212


Fuzzing Extra Fun! 6.1.2

One common practice for testing compilers (and DBMS) is to randomly generate potential queries, and then
test for differences in results from optimised and un-optimised.

For example SQLsmith can be used to generate random SQL queries, and has been used to test and find bugs
in Postgres, sqlite3, monetdb and more (see the score list).

6.1.2 Query Equivalence

Semantic Equivalence Definition 6.1.1

Plans are semantically equivalent if they provable produce the same output on any dataset.

Closure (Mathematics) Definition 6.1.2

(Simplified) A set is closed under an operation if the operation produces elements of the same set.

� N is closed under +, but not under − (can produce negative numbers)

� Relational algebra is closed (the set of possible relations is closed under the operators of the algebra).

As relational algebra is closed, operators are easily composable.

� We can determine equivalences between compositions of operators.

� Substitutions of a part of a plan with an equivalent, results in a new equivalent plan.

� We can use this to transform plans into more optimal (but equivalent) plans.

MonetDB Optimiser Extra Fun! 6.1.3

MonetDB is an open source, in-memory, decomposed database. Its optimiser includes implementations for
the optimisations discussed in this chapter (e.g selection pushdown)

6.2 Peephole Transformations

”An equivalent transformation of a subplan is an equivalent transformation of the entire plan.”

A set of rules for transforming small subplans (peephole) is applied while traversing the plan.

65

https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith/wiki#score-list
https://github.com/MonetDB/MonetDB/blob/master/monetdb5/optimizer/optimizer.c
https://github.com/MonetDB/MonetDB/blob/master/monetdb5/optimizer/opt_pushselect.c


WACC Peephole Extra Fun! 6.2.1

This is the same idea as peephole optimisations discussed in the WACC project and 50006 - Compilers.
mov r1, r1 ; redundant move str r4, [sp, #8] ; overwritten store

str l3, [sp, #8]

� Need some order with which to traverse the plan

� Need a set of patterns/rules to apply.

6.2.1 Avoiding Cycles

Analytically Optimal Plan Definition 6.2.1

The final plan output of the optimiser (not necessarily the most optimal plan).

Avoiding this requires careful rule selection.

6.2.2 Branches

As many possible rules may be applied, some strategy is needed to determine which to apply (e.g just order the
rules).

Simplicity Very easy to implement (particularly with pattern matching).
Time Matching and applying rules is faster than more holistic approaches.

Verifiability Can check each rule for correctness by checking if all rules produce semantically equiv-
alent sub-plans.

Composability Can easily add new rules to be composed with previous, rules can enable new rules to
be applied.

66



Loops Developer must be careful to not introduce potential loops in rule application.
Local Optima Typically many choices of rule to apply ⇒ local optima.

6.3 Classifying Optimisation

Algorithm The implementation of operators (e.g joins).
Data Data & metadata held by the system (e.g cardinalities, histograms)

Algorithm
Agnostic Aware
Logical Physical

Data
Agnostic Rule-Based • •
Aware Cost-Based • •

In DBMS optimisations are defined as operating on logical or physical plans, and are either rule-based or cost-based.

Logical Algorithm-Agnostic Deals only with relational algebra.
Physical Algorithm-Aware Can use different operator implementations, indices etc.
Rule-Based Data-Agnostic Applying optimisation rules that are almost always beneficial.
Cost-Based Data-Aware Using data to estimate the cost of operations in order to determine which transfor-

mations to apply (e.g reordering selections based on each’s estimated selectivity).

6.4 Logical Optimisation

In order to demonstrate logical optimisation we use a representation of (pseudo) relational algebra in Haskell.

data Operator =

Scan Table

| Select Operator Predicate

| Project Operator RowTrans

| Product Operator Operator

| Join Operator Operator Predicate

| Difference Operator Operator

| Union Operator Operator

| Aggregation Operator AggFun

| TopN Operator SortBy

� Purely logical representation, Processing model &
operator implementations not specified.

� Other functions for predicting cost, ordering predi-
cates defined

� Using data to allow for easy pattern matching,
rather than using an operator typeclass.

We include basic functions for applying transformations to the plan:

-- Apply some transformation to all children of an operator

apply :: (Operator -> Operator) -> Operator -> Operator

-- Maybe peephole optimise operator (do not traverse to children)

type Peephole = Operator -> Maybe Operator

-- Optimise a plan

type Optimiser = Operator -> Operator

hence we can create functions to take a set of rules and some traversal and create an optimiser we can apply to
plans. For example:

-- Continue traversing until making an optimisation, then return to root.

-- As optimisations on either side of a join, difference, or union are

-- independent, traverse both independently (with apply).

root :: Peephole -> Optimiser

root peep orig

= case peep orig of

Just opt -> opt

Nothing -> apply (root peep) orig

67



All that remains is to determine the Peephole’s rules.

Your turn! Extra Fun! 6.4.1

One way to further simplify the representation is to embed RA as a DSL within another language. Racket
(the language oriented programming language) is designed for this. Have a go with your own implementation!

6.4.1 Rule Based Logical Optimisation

The optimiser has a set of (almost) universally beneficial rules applied to transform the plan.

Some basic assumptions from which to derive rules include:

� Higher cardinality (more tuples) ⇒ Higher Cost

� Joins usually increase cardinality, or leave unchanged

� Selections reduce cardinality

� Aggregations reduce cardinality

� Data access is more expensive than function evaluation (can assume generally, without exposing operator
implementation)

Portable Implementation independent (i.e can change processing model without needing to
change optimisations - reduced developer maintenance requirements).

Robust Small changes in the data or algorithm do not dramatically change performance

Wrong The transformations need to be almost always beneficial, so must be conservative with
choosing rules. A wrong rule can significantly reduce performance.

Brittle A rule removal/addition can result in significant performance changes.
Unprincipled Rules tend to be ad-hoc or arbitrary, they are backed by assumptions - not information

about workload.
Loops As with peephole in general.

-- creating peephole opt for logical rule-based optimisation

logicalRuleBased :: Peephole

-- at the end is a catch-all base case

logicalRuleBased _ = Nothing

Selection Pushdown

Selections can be pushed down through joins if they only use attributed from one side of the join.

� As selections are pipelineable, this often a good optimisation when the underlying processing model is volcano.

SELECT * FROM opL JOIN opR WHERE p2;

68

https://racket-lang.org/


. . . is optimised to . . .

SELECT * FROM (SELECT * FROM opL WHERE p2) JOIN opR;

-- or

SELECT * FROM opL JOIN (SELECT * FROM opR WHERE p2);

-- assuming attributes names of opR and opL different

logicalRuleBased (Select (Join opL opR p1) p2)

| attributes opR `containsAll` selectCols p2 = Just (Join opL (Select opR p2 s2) p1 s1)

| attributes opL `containsAll` selectCols p2 = Just (Join (Select opL p2 s2) opR p1 s1)

Dont push me down! Example Question 6.4.1

Is selection pushdown ever not very beneficial, provide some edge cases?

� If the selectivity of the selection is 100% and the join does not increase cardinality (no benefit).

� If the join significantly reduces cardinality.

UNFINISHED!!!

Selection Ordering

Reordering selections to reduce cardinality at the earliest possible operator.

� We infer which selection has the lowest selectivity using a heuristic

� A common heuristic for comparison operators: == < ( < and > ) < ( <= and >= ) < <>.

SELECT * FROM ( SELECT * FROM op WHERE a2 <> v2 ) WHERE a1 == v1;

. . . is optimised to . . .

SELECT * FROM ( SELECT * FROM op WHERE a1 == v1 ) WHERE a2 <> v2;

logicalRuleBased

(Select (Select op p1) p2) | p2 `predicateLess` p1 -- (with EQ < NEQ)

= Just (Select (Select op p2) p1)

69



Implication

Given one selection implies the other, we can eliminate another.

SELECT * FROM (SELECT * FROM op WHERE a1 == v1) WHERE a1 == v1 AND a2 == v2

. . . is optimised to . . .

SELECT * FROM op WHERE a1 == v1 AND a2 == v2

logicalRuleBased

(Select (Select op p1) p2)

| p1 `predicateImplies` p2 = Just (Select op p1)

| p2 `predicateImplies` p1 = Just (Select op p2)

More sophisticated rules for simplifying, combining and eliminating selections are possible.

6.4.2 Cost Based Logical Optimisation

A cost metric is defined to determine which optimised plans are better/worse.

-- Types for query optimisation

type Selectivity = Double

type Cost = Double

-- a function to determine the selectivity of a predicate

selectivity :: Predicate -> Cost

-- a heuristic for cost, using an estimate for the number of tuples output by an operator

sizeCost :: Operator -> Cost

sizeCost op = case op of

Scan t -> fromIntegral (tableSize t)

Select op p -> selectivity p * sizeCost op

Project op _ -> sizeCost op

Product opL opR -> sizeCost opL * sizeCost opR

Join opL opR p -> selectivity p * sizeCost opL * sizeCost opR

Difference opL opR -> max (sizeCost opL) (sizeCost opR)

Union opL opR -> sizeCost opL + sizeCost opR

Aggregation _ af -> aggGroups af

TopN op _ n -> min (sizeCost op) n

Selectivity needs to get an estimate. We will consider the basic case of an equality selection σa=v where the
possible values of v are for attribute a are know.

Uniform Distribution

If we assume all values are equally likely:

selectivity(a = v) ≜
1

number of distinct values

70



Histograms

Store the frequency of values in a table.

histograma

values v1 v2 v3 . . . vn
frequency c1 c2 c3 . . . cn

selectivity(a = v) ≜ P (a = v) ≡
histograma.v

histograma.total

� Must retain and update a histogram for each attribute, with a count for each unique value.

� Histograms can be binned (like bitmap indices) when the number of unique values is large.

when evaluating multiple equalities, we assume attribute independence, and hence:

selectivity(a1 = v1 · · · ∧ an = vn) ≡ P (a1 = v1)× · · · × P (an = vn) =
histograma1

.v1

histograma1
.total

× · · · ×
histograman

.vn

histograman
.total

Binned Histograms Extra Fun! 6.4.2

SparkSQL’s catalyst optimiser uses binned histograms as implemented here

Multidimensional Histograms

Often attribute values are correlated (e.g largest orders tend to be urgent).

histogram(a1,a2)

attribute a1
va11 va12 va13 . . . va1n

attribute a2

va21 c(1,1) c(2,1) c(3,1) c(4,1) c(5,1)
va22 c(1,2) c(2,2) c(3,2) c(4,2) c(5,2)
va23 c(1,3) c(2,3) c(3,3) c(4,3) c(5,3)
... c(1,4) c(2,4) c(3,4) c(4,4) c(5,4)
va2n c(1,5) c(2,5) c(3,5) c(4,5) c(5,5)

� Store multiple histograms to show frequencies of attribute values, given other attribute’s value.

� Number of histograms grows combinatorially with number of tables.

� Reducing the number of histograms, but still producing good selectivity estimates is an open area of research.

selectivity(a1 = v1 ∧ a2 = v2) = P (a1 = v1|a2 = v2)× P (a2 = v2) =
histogram(a1,a2).(v1, v2)

histogram(a1,a2).total

6.5 Physical Optimisation

Physical Plan Definition 6.5.1

A plan containing implementation specific information, and describing how the query should be physically
executed.

� Operator implementations (e.g which join: sort-merge, hash, nested loop, index based join etc)

� Costs of different implementations (e.g hash join vs nested-loop → time versus memory)

� Available indices & data structure choices (e.g type of hashmap, hash function)

Physical plan optimisation focuses on optimising the plan for the specific system the query is executed on.

The cost metric different types of cost (e.g time versus memory)

� Produced tuples

� Page faults

� Intermediate buffer sizes

� (Volcano Processing) function calls

� Storage access & availability

We can then decide if a rule is universally beneficial (for rule-based), or determine which possible plan is lowest cost
(cost-based)

71

https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/Statistics.scala


6.5.1 Rule Based Physical Optimisation

Much like logical rule-based optimisation, (almost) universally beneficial (given the decided cost metric) rules to
improve performance.

Data structures Always use hash map with rehashing for probe if expected collisions are high.
Parallelism always use parallel sort for ORDER BY, always partition hash joins
Using Indices If foreign key index exists, always use for foreign key join, if getting range always use available

bitmap or B+ tree index.
Cache Always use cache-conscious partitioning to improve locality.

6.5.2 Cost Based Physical Optimisation

Much like logical cost-based optimisation but on a physical plan (using implementation specific details).

Data Consider cardinalities & how this affect operator choice (e.g choose sort-merge join over hash
if the required hashtable is too large for the buffer pool).

Hardware Function call overhead (for this architecture), buffer pool size, access latencies, available
parallelism (hardware threads).

Algorithm Must consider how algorithms expected costs change with parameters (e.g cardinality)

This is the current state of the art in optimisation.

6.6 SparkSQL

SparkSQL Logical Optimiser Extra Fun! 6.6.1

You can find the source for SparkSQL’s catalyst optimiser’s logical optimisations here on github.

� Rule-based logical optimiser and cost-based physical optimiser

� Rather than reapplying the physical plan optimiser repeatedly on one plan, multiple possible candidate plans
are produced and evaluated (negates local optima problem at the cost of generating many physical plans).

Logical rules are expressed as extensions of a Rule[LogicalPlan] interface. For example expression simplification
and constant folding can be found in the expression optimiser.

/**

* Simplifies boolean expressions:

* 1. Simplifies expressions whose answer can be determined without evaluating both sides.

* 2. Eliminates / extracts common factors.

* 3. Merge same expressions

* 4. Removes `Not` operator.

*/

object BooleanSimplification extends Rule[LogicalPlan] with PredicateHelper {

def apply(plan: LogicalPlan): LogicalPlan = plan.transformWithPruning(

_.containsAnyPattern(AND, OR, NOT), ruleId) {

case q: LogicalPlan => q.transformExpressionsUpWithPruning(

72

https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/expressions.scala


_.containsAnyPattern(AND, OR, NOT), ruleId) {

case TrueLiteral And e => e

case e And TrueLiteral => e

case FalseLiteral Or e => e

case e Or FalseLiteral => e

// ...

}

// ...

}

}

73



Chapter 7

Transactions

40007 - Introduction to Databases Extra Fun! 7.0.1

Histories, anomalies and basic concurrency control are also taught in the 40007 - Introduction to Databases
module.

7.1 SQL Transaction

BEGIN TRANSACTION T1

-- commands to be run, for example:

SELECT * FROM Orders;

INSERT INTO Customers VALUES ("bob", 2, 44);

END TRANSACTION -- transaction is committed or aborted

Transaction Definition 7.1.1

A block of sql statements that can be run on a database, transactions respect the ACID properties.

Many transactions can be executed on a database concurrently, we can reason about a serialization graph:

� Shows which transactions observe the effects of other transactions.

� Cannot have cycles → if a DBMS observes a cycle will occur, it must recover (e.g by aborting a transaction)

Graph cycles Example Question 7.1.1

Is a cycle present in the serialization graph from the following transactions?
BEGIN TRANSACTION T1

INSERT INTRO table1 VALUES (1,9);

SELECT sum(column1) FROM table1;

END TRANSACTION

BEGIN TRANSACTION T2

INSERT INTRO table1 VALUES (17,90);

SELECT sum(column1) FROM table1;

END TRANSACTION

Yes as TRANSACTION T1 reads from TRANSACTION T2’s insertion (17, 90) and vice versa for insertion (1, 9).

7.1.1 ACID Properties

Atomicity Definition 7.1.2

Transactions are completed in entirety (committed), or not at all (aborted).

74

https://www.doc.ic.ac.uk/~pjm/idb/


Consistency Definition 7.1.3

Transactions bring the database between states where explicit and implicit constraints are satisfied & the
database is valid. There can be inconsistency between states/within a transaction.

Isolation / Serializability Definition 7.1.4

The observable state of a database after all transactions are committed must be equivalent to some serial
execution.

� Can create a serialization graph with no cycles.

Durability / Recoverability Definition 7.1.5

A committed transaction does not depend on the effect of an uncommitted transaction. The results of
committed transactions are persistent.

� Hence it is safe to abort any uncommitted transaction.

� Once committed, the results of a transaction are durable to failure (e.g power failure).

7.2 Histories

Read/Write Locks Definition 7.2.1

Write/Exclusive Only lock holder can hold write lock for object o1.
Read/Shared Any number of other read locks on o1 can be held.

� Many different locking schemes can be implemented → impact possible anomalies and performance.

� Can lock different object types for differing levels of granularity (an entire database, a table, a set of
tuples, a single tuple or even a single value in a tuple).

Read/Write locks exist in many languages (e.g std::shared_mutex in C++).

Transaction 1
Read Write

Transaction 2
Read No Conflict Conflict!
Write Conflict! Conflict!

We can formalise transactions by their read/write operations, and by the locks they acquire to perform these.

rl1[o1] Transaction 1 acquires a read lock on object o1.
ru1[o1] Transaction 1 releases a read lock on object o1.
r1[o1] Transaction 1 reads from object o1.

wl2[o3] Transaction 2 acquires a write lock on object o3.
wu2[o3] Transaction 2 releases a write lock on object o3.
w2[o3] Transaction 2 writes to object o3.

c7 Transaction 7 commits.
a5 Transaction 5 aborts.
e1 Transaction 1 commits or aborts.

We can order operations using first ≺ second.

75



7.3 Anomalies

Dirty Read / Read After Write / Uncommitted Dependency Definition 7.3.1

A transaction reads uncommitted data.
w1[o] ≺ r2[o] ≺ e1

BEGIN TRANSACTION T1

SELECT a FROM table WHERE b = 1;

END TRANSACTION

-- committed T1 depends on uncommitted T2

BEGIN TRANSACTION T2

UPDATE table SET a = 5 WHERE b = 1;

END TRANSACTION

Non-Repeatable Read Definition 7.3.2

Reads within the same transaction, of the same rows, contain different values.

BEGIN TRANSACTION T1

SELECT * from table;

SELECT * from table;

END TRANSACTION

BEGIN TRANSACTION T2

UPDATE table SET a = 9 WHERE b = 3;

END TRANSACTION

Phantom Read Definition 7.3.3

Reads within the same transaction return a different set of rows. Hence some rows were phantom.

� For example two identical selects producing different results imply some phantom data has been read.

BEGIN TRANSACTION T1

SELECT * from table;

SELECT * from table;

END TRANSACTION

BEGIN TRANSACTION T2

DELETE FROM table; -- delete all rows

END TRANSACTION

Dirty Write / Write After Write Definition 7.3.4

A transaction overwrites uncommitted data from another transaction.

w1[o] ≺ w2[o] ≺ e1

BEGIN TRANSACTION T1

UPDATE table SET a = 9 WHERE b = 1;

UPDATE table SET a = 9 WHERE b = 3;

END TRANSACTION

BEGIN TRANSACTION T2

UPDATE table SET a = 5 WHERE b = 1;

UPDATE table SET a = 5 WHERE b = 3;

END TRANSACTION

� If TRANSACTION T1 overwrites uncommitted updates from TRANSACTION T2, then we will get a mixture
of a = 9 OR a = 5.

� Under these circumstances there is no equivalent serial execution

76



Write Skew Definition 7.3.5

Concurrent transactions read an overlapping range of rows and commit disjoint updates without seeing the
other’s update.

BEGIN TRANSACTION T1

-- read a

UPDATE table SET c = a WHERE b = 1;

END TRANSACTION

-- a <> c (a and b has been swapped)

BEGIN TRANSACTION T2

-- read c

UPDATE table SET a = c WHERE b = 1;

END TRANSACTION

Inconsistent Analysis Definition 7.3.6

A transactions reads an inconsistent view of the database state.

r1[oa] ≺ w2[oa], w2[ob] ≺ r1[ob]

UNFINISHED!!!
BEGIN TRANSACTION T1

SELECT sum(a) FROM table;

SELECT sum(a) FROM table;

-- sum reads some a = 9 and some a = 17

END TRANSACTION

BEGIN TRANSACTION T2

UPDATE table SET a = 9 WHERE b = 1;

UPDATE table SET a = 17 WHERE b = 3;

END TRANSACTION

Lost Update Definition 7.3.7

A write from a transaction is overwritten by another update using outdated information.

r1[o] ≺ w2[o] ≺ w1[o]

BEGIN TRANSACTION T1

WITH old AS (SELECT a FROM table WHERE b = 1)

UPDATE table SET a = (

SELECT a + 4 FROM OLD

) WHERE b = 1;

END TRANSACTION

BEGIN TRANSACTION T2

UPDATE table SET a = 9 WHERE b = 1;

END TRANSACTION

7.4 Isolation Levels

Read Uncommitted Definition 7.4.1

Dirty Write Dirty Read Write Skew Inconsistent Analysis Lost Update Ph-Read Non-Rep Read
Prevented Allowed Allowed Allowed Allowed Allowed Allowed

Reads occur immediately (can read uncommitted data), writers wait for other writers to commit (serial order
for writers).

� All readonly queries can execute immediately and in parallel.

� Susceptibility to anomalies means it is rarely the default isolation level.

77



Read Committed Definition 7.4.2

Dirty Write Dirty Read Write Skew Inconsistent Analysis Lost Update Ph-Read Non-Rep Read
Prevented Prevented Allowed Allowed Allowed Allowed Allowed

Readers wait for writers to commit. All writes of a transaction are atomically made available at commit time.

� Each row is read/write locked, read locks acquired & dropped as needed, write locks held until com-
mit/abort.

Repeatable Read Definition 7.4.3

Dirty Write Dirty Read Write Skew Inconsistent Analysis Lost Update Ph-Read Non-Rep Read
Prevented Prevented Prevented Prevented Prevented Allowed Prevented

Strengthen’s read committed to guarantee any repeated read in a transaction returns the same result.

� Phantom reads can occur (different rows → different reads)

� Each row is read/write locked, both read & write locks held until commit/abort.

Serializable Definition 7.4.4

Dirty Write Dirty Read Write Skew Inconsistent Analysis Lost Update Ph-Read Non-Rep Read
Prevented Prevented Prevented Prevented Prevented Prevented Prevented

Readers get full isolation, execution is serializable.

� Restrictive & expensive → never the default isolation level.

� Each range of rows (e.g table) affected by a transaction is read/write locked for the entire transaction.

7.5 Concurrency Schemes

Serializability is required → Use 2PL
Conflicts expected to be Low → Use OCC lowest overhead
Conflicts expected to be high → Use MVCC

7.5.1 Serial Execution

No concurrency, execute all transactions in sequential order.

No Anomalies Solves all aforementioned anomalies.
Simple Implementation Easy to implement: No concurrency ⇒ No problems!

Latency As transactions cannot occur concurrently, they must be queued and the user must
wait. Very poor performance under load.

Underutilisation Limited usage of hardware → limit to how much individual queries can be parallelised
to use cores, more transactions in parallel solves this.

Not Scalable Cannot apply to larger databases (e.g supporting millions of large queries per second).

A better approach is to take a practical approach to concurrency (limit if necessary for correctness, otherwise
maximise), and to accept some anomalies (allow the user to configure which are acceptable).

78



7.5.2 Two-Phase Locking (2PL)

� Transaction acquires locks required in growth phase, and releases in shrinking phase.

� Acquires locks on objects before reading/writing.

Deadlocks

Deadlocks must be prevented, this can be achieved in several ways:

� Acquire locks in a global order → we cannot know which locks a query may need ahead of time.

� Complete a dry-run to determine required locks, before then accessing in global order → transactions may
occur between dry-run and run, and hence change the set of locks required.

� Timeouts: Locks safe for a predefined time, after this if another transaction acquires the lock, it aborts the
holding transaction.

� Cycle Detection: At regular intervals, inspect locks, waiters and holders to compute a graph, and abort
transactions (usually youngest) to remove cycles.

Lock Manager

Manages the locking of ranges within tables as either read or write.

� Checks for conflicts in overlapping ranges

� Ensures locks are released properly

To maximise concurrency, we want to lock as little as is required for the given isolation level.

Serializable 2PL ensures realizability (and hence no anomalies).

79



Deadlock Detection Can be expensive to avoid & complex to implement.
Mutual Exclusion Ranges are locked, so cannot read & write, or write & write in parallel.

Predicate Locking Extra Fun! 7.5.1

Rather than locking objects (e.g rows, tables), lock predicates.

-- lock updates, deletions, inserts of rows potentially covered by this predicate

SELECT * FROM people WHERE name <> "bob" AND age > 18;

UPDATE people SET cool = true WHERE name <> "bob"; -- can run concurrently

� On attempting a query, use the current predicate locks, and predicate used for access to determine
locking.

� Locking rows can prevent Non-repeatable-read, locking inserts to a table (using predicate locking) can
prevent phantom read.

7.5.3 Timestamp Ordering

Each tuple is timestamped for last read and last write, and every transaction is timestamped at the start of execution.

Read Check tuple read timestamp (if newer than transaction timestamp abort), set read
timestamp to transaction timestamp.

Write Check tuple write timestamp (if newer than transaction timestamp abort), set
write timestamp to transaction timestamp.

7.5.4 Optimistic Concurrency Control (OCC)

Run transactions without locks, buffering reads, inserts and updates until commit. At commit check if the database
is unmodified (if not then abort) and apply with locks.

� The simplest multiversion concurrency scheme.

� Can use a timestamp to determine when rows have been changed.

Few Conflicts Performant when the number of conflicts is low (e.g analytics database with few up-
dates).

7.5.5 Multi-Version Concurrency Control (MVCC)

Store different versions of the tuple at different timestamps to allow a transaction to use old committed data, as new
committed data is written to the same rows.

� Transactions use tuples that have the latest timestamp less than the transaction’s start.

� Timestamps can be stored with tuples, or separately. Table structure needs to allow for multiple versions of
the same row (e.g append new rows into one large table, or table entries are lists of rows etc.)

Many Conflicts Performs better than other concurrency control schemes when conflicts are frequent
(conflicts do not force transactions to wait).

Time travel Multiple versions of tuples allow for quick rollbacks, to inspect recent past values for
rows.

80



Chapter 8

Streams

8.1 Motivation

There are many data processing applications that deal with streams of relevance-priority data (e.g Sports data,
weather data, telemetry (spacecraft, service usage)).

� Recent events are valuable, old events are not (and can be discarded or sent to data warehouse after some time)

� Users run a static query on an unbounded stream of data

� The state of the system must be bounded (limited memory)

� Timestamps for events are important (tradeoffs between performance, and accuracy), the order at which events
are received is important.

� Results can be approximate

8.2 Push Operators

Rather than operators pulling in tuples (as in volcano processing), operators push tuples to the next stage.

// For easy include of files in the notes, each operator is in a different file

// more maintainable that using line numbers with \inputminted

#include "operators/output.h"

#include "operators/project.h"

#include "operators/push_operator.h"

� As with volcano and bulk processing we can also send references to data (e.g indexes into a larger backing
table) to avoid copies.

� Virtual method used to allow operators to be combined into queries at runtime.

� Can use std::move to reduce deep copying for large Event types (e.g vectors of variants).

8.2.1 Naive Implementation

Output to Console

Some form of output operator is required to send data to the user (e.g player positions sent over the network to a
live sports match website).

Here a basic Output operator pushes to a stream (e.g a file with std::ofstream, or to the console with std::cout).

template <typename Event> class Output : public PushOperator<Event> {

std::ostream &output_;

public:

Output(std::ostream &output) : output_(output) {}

void process(Event data) override { output_ << "->" << data << std::endl; }

};

81



Selection

template <typename Event> class Select : public PushOperator<Event> {

PushOperator<Event> *plan_;

std::function<bool(Event &)> predicate_;

public:

Select(PushOperator<Event> *plan, std::function<bool(Event &)> predicate)

: plan_(plan), predicate_(predicate) {}

void process(Event data) override {

if (predicate_(data))

plan_->process(std::move(data));

}

};

Project

Generalised here to just map a function over the stream.

template <typename InputEvent, typename OutputEvent = InputEvent>

class Project : public PushOperator<InputEvent> {

PushOperator<OutputEvent> *plan_;

std::function<OutputEvent(InputEvent)> function_;

public:

Project(PushOperator<OutputEvent> *plan,

std::function<OutputEvent(InputEvent)> function)

: plan_(plan), function_(function) {}

void process(InputEvent data) override {

plan_->process(function_(std::move(data)));

}

};

Data Source

We also need to be able to pipe data directly into a chain of operators.

� Can implement a class to directly call PushOperator::process.

� Here a convenient interface is used to demonstrate terminal input.

template <typename Event> class Source {

public:

virtual void run() = 0;

};

template <typename Event> class UserInput : public Source<Event> {

PushOperator<Event> *plan_;

std::istream &src_;

public:

UserInput(PushOperator<Event> *plan, std::istream &src)

: plan_(plan), src_{src} {}

void run() override {

for (Event r;; src_ >> r)

plan_->process(std::move(r));

}

};

82



Combining Operators

We can then combine operators to form queries.

// Configure output

Output<int> console(std::cout);

// Build query

Project<int, int> mult(&console, [](auto i){ return i * 3; });

Select<int> even(&mult, [](auto &i){ return i % 2 == 0; });

UserInput<int> user(&even, std::cin);

// Get input stream

user.run();

1

2

->6

3

4

->12

8.2.2 PushBack

Resource usage of operators is important.

� Some operators may buffer rows (in order to resolve order, retain aggates about current window (e.g min/max))

� Operators could be extracted to different threads, in which case some operators may run slowly compared with
other operators.

One way to inform upstream operators about backpressure from pressured operators downstream is by returning
some measure of pressure.

template<typename Event>

class PushOperator {

public:

// return pressure on operator

virtual float process(Event data) = 0;

};

Operators can then use some heuristic of time taken, buffer sizes and the backpressure from operators it pushes to.

8.3 Time

Systems often implicitly provide timestamps for pushed data, for example when joining data based on timestamps.

� Needs to be consistent (same stream results in the same output data).

� Needs to be performant/low overhead (reduce backpressure).

Processing-Time Definition 8.3.1

Each operator timestamps data when it is pushed to the operator.

class SomeOperator : public Operator {

// ... internal state

public:

void process(InputEvent data) override {

auto data_timestamp = std::chrono::system_clock::now();

// ... use data & data_timestamp

}

};

inconsistent unpredicatable low-overhead

83



Ingestion-Time Definition 8.3.2

Timestamp when received by the system (i.e the source object that pushes to the first operator).

class NetworkSource : public Source {

// ... internal state

public:

void run() override {

for (;;) if (!network.buffer_empty()) {

auto data_timestamp = std::chrono::system_clock::now();

auto data = network.pop_next();

// ... use data & data_timestamp

}

}

};

consistent unpredicatable medium-overhead

Event-Time Definition 8.3.3

Timestamps externally provided by the source supplying events to the data processing system as part of data
input.

� System needs to ensure timestamps are ordered (external provider may not be correct).

class NetworkSource : public Source {

// ... internal state

public:

void run() override {

for (;;) if (!network.buffer_empty()) {

auto data = network.pop_next();

// can just treat timestamp as normal data, or extract specially

auto data_timestamp = data.timestamp;

// ... use data & data_timestamp

}

}

};

consistent predicatable high-overhead

8.3.1 In-Order Processing

In-Order Processing Definition 8.3.4

Events are assumed to be entered in timestamp order (or by some other monotonically progressing attribute
- e.g counter).

� Greatly simplifies stream system implementation, a powerful guarantee.

� Difficult to ensure order guarantee holds (on a distributed, asynchronous system there is not global
clock)

While it is usually prohibitively difficult to implement In-Order processing, we still need to have some guarantees
on ordering for queries that rely on in-order data.

� If a single server is used to apply timestamps it can become a bottleneck.

� We can make some assumptions on bounds of how out-of-order messages can be received.

� We can reduce the In-Order to a Sort-Order.

Transactions

The stream of events is treated as a sequence of transactions.

84



� All events are inserted into persistent database

-- Store all inputs to persistent backing table

ON IncomingEvent newEvent INSERT INTO event_backing_table VALUES (newEvent)

-- Stream out data (e.g by selecting based on a predicate)

SELECT * FROM event_backing_table WHERE some_predicate(x, y, newEvent);

Finite Memory Streams are infinite, persistent database must have older entries cleared/garbage col-
lected.

Lateness Bounds

A lateness bound is assumed for any event, events outside this bound are dropped.

ON IncomingEvent newEvent INSERT INTO event_backing_table VALUES (newEvent)

SELECT * FROM event_backing_table WHERE some_predicate(x, y, newEvent)

-- Delete old data from the table using the new event's timestamp

DELETE FROM event_a_backing_table WHERE timestamp < (newEvent.timestamp - LATENESS_BOUND);

Tune Lateness Bound If the bound is too small (many tuples dropped), too large and memory
resource becomes pressured by large backing table

Watermarks/Punctuation

The user sends a specific punctuation event to inform the system that all older events than a specific timestamp can
be dropped.

ON IncomingEventWatermark e DELETE FROM event_backing_table WHERE timestamp < e.up_to_time;

User Configurable The user can specify when events should be dropped.

8.3.2 Windows

There are also Session Windows open and closed by an event (e.g user loggin in & out).

Lateness bounds are an implementation detail for ordering streams

Windows are SQL supported abstractions for viewing a slice of a stream, and are part of the language semantics.

SQL Windows Extra Fun! 8.3.1

Despite being originally designed only for persistent databases, SQL added window functions in SQL 2003
(see changelog).

85

https://en.wikipedia.org/wiki/SQL:2003


SELECT avg(temp) OVER (

ORDER BY timestamp

ROWS BETWEEN 5 PRECEDING AND 5 FOLLOWING

) AS smoothed_temp

FROM SpaceStationTemp;

We can run aggregate functions on a window:

min, max, sum, count -- Distributive

avg -- Algebraic

percentile_cont -- Holistic

Percentiles require the entire window to be read (cannot subdivide the window and combine as with sum, count).

Invertible Function Definition 8.3.5

Functions with an inverse that can be used to remove rows sliding out of the window from the aggregation.

sum, count, avg -- invertible

min, max, percentiles -- non-invertible

8.3.3 Aggregate Implementations

We can implement basic aggregate functions using the previous PushOperator<Event> abstraction.

Window Sum

class WindowSumAggregator : public PushOperator<float> {

PushOperator<float> *plan_;

// a circular buffer window

// the next index after buffer_i_ is the start of the window

std::vector<float> window_buffer_;

size_t buffer_i_ = 0;

float aggregate = 0;

// for checking the window is filled

size_t count_ = 0;

public:

WindowSumAggregator(PushOperator<float> *plan, size_t windowsize)

: plan_(plan), window_buffer_(windowsize) {}

void process(float f) override {

buffer_i_ = (buffer_i_ + 1) % window_buffer_.size();

aggregate += f;

count_++;

86



if (count_ > window_buffer_.size()) {

aggregate -= window_buffer_[buffer_i_];

window_buffer_[buffer_i_] = f;

plan_->process(aggregate);

} else {

window_buffer_[buffer_i_] = f;

}

}

};

Window Median

Improve Me! Extra Fun! 8.3.2

The provided algorithm must copy the entire window for every WindowMedianAggregator::process. For
large window sizes this is very slow, this can be made much more efficient!

class WindowMedianAggregator : public PushOperator<float> {

PushOperator<float> *plan_;

std::vector<float> window_buffer_;

size_t buffer_i_ = 0;

// for checking the window is filled

size_t count_ = 0;

public:

WindowMedianAggregator(PushOperator<float> *plan, size_t window_size)

: plan_(plan), window_buffer_(window_size) {}

void process(float f) override {

const size_t size = window_buffer_.size();

buffer_i_ = (buffer_i_ + 1) % size;

window_buffer_[buffer_i_] = f;

count_++;

if (count_ > size) {

// copy and sort, this can be made much more efficient using a multiset

// and vector see multiset median trick:

// https://codeforces.com/blog/entry/68300

std::vector<float> sorted = window_buffer_;

std::sort(sorted.begin(), sorted.end());

// if even size get average of two middle, else middle element

if (size % 2 == 0) {

plan_->process((sorted[size / 2] + sorted[(size / 2) - 1]) / 2);

} else {

plan_->process(sorted[size / 2]);

}

}

}

};

87



8.3.4 Two Stacks Algorithm

Two stacks of max size window size are kept.

� Each contains aggregates calculated from below adjacent aggregates and current value.

� When the front stack is full, and back stack empty (occurs every
1

window size
) flip the front stack, recalculate

aggregates and set to back stack.

We can implement this using the previous PushOperator<Event> abstraction.

// To improve: we can use one vector instead of two separate

template <typename Event, Event agg(Event &, Event &)>

class WindowTwoStackAggregator : public PushOperator<Event> {

PushOperator<Event> *plan_;

// front stack

std::vector<Event> front_values_;

std::vector<Event> front_agg_;

// back stack

std::vector<Event> back_values_;

std::vector<Event> back_agg_;

// track the top of front and back stacks

size_t window_pos = 0;

// to determine when to start outputting aggregates

size_t count_ = 0;

// flip front stack to back stack, sets window_pos = 0

// invariants:

// - Must have window_size items present

88



void flip() {

size_t size = front_values_.size();

assert(window_pos == size);

for (size_t i = 0; i < size; i++) {

back_values_[size - 1 - i] = front_values_[i];

}

back_agg_[0] = back_values_[0];

for (size_t i = 1; i < size; i++) {

back_agg_[i] = agg(back_agg_[i - 1], back_values_[i]);

}

window_pos = 0;

}

// Push an item to the front_stack

// leaves the window_pos untouched

void push_front(Event r) {

if (window_pos == 0) {

front_values_[0] = r;

front_agg_[0] = r;

} else {

front_values_[window_pos] = r;

front_agg_[window_pos] = agg(r, front_agg_[window_pos - 1]);

}

}

public:

WindowTwoStackAggregator(PushOperator<Event> *plan, size_t window_size)

: plan_(plan), front_values_(window_size), front_agg_(window_size),

back_values_(window_size), back_agg_(window_size) {}

void process(Event r) override {

size_t max_size = front_values_.size();

if (count_ < max_size) {

push_front(r);

window_pos++;

} else {

if (window_pos == max_size) {

flip();

}

push_front(r);

plan_->process(

agg(front_agg_[window_pos], back_agg_[max_size - 1 - window_pos]));

window_pos++;

}

count_++;

}

};

For example:

Output<int> console(std::cout);

WindowTwoStackAggregator<int, intmax> maxints(&console, 3);

UserInput<int> user(&maxints, std::cin);

user.run();

89



Space Efficiency Extra Fun! 8.3.3

It is possible to implement the two-stacks algorithm more efficiently using a single vector (index from top
down is back stack, bottom up is front stack).

8.4 Stream Joins

8.4.1 Handshake Join

Handshake Join Definition 8.4.1

� A nested loop join joining over a window.

� Can be optimised for parallel window joins.

� Only works for window queries.

90



8.4.2 Symmetric Hash-Joins

Symmetric Hash-Joins Definition 8.4.2

Both input streams build their own hashtable, while probing the other. Matches from probes are inserted
into the joined output stream.

� A pipelineable hash join

� Does not have a equivalent window oriented version

� Hashtables grow with unbounded input streams, so needs some form of garbage collection of older / not
joinable hashtable entries.

91



8.4.3 Bloom Filters

Bloom Filter Definition 8.4.3

A table of bits, indexed by hashing the key used for the join. By using multiple independent hashes, the
probability all collide is low.

� Collisions/false-positives still possible.

� Can use as many independent hashes as needed.

� Uses finite space.

� Can be used to implement a form of symmetric hash-join.

Tuning Bloom Filters

Bloom filters have several parameters that can be tuned.
m bits in filter
n expected number of distinct elements
k number of hash functions
ϵ False-positive rate

m ∼= −1.44× n× log2(ϵ) k ∼=
m

n
× loge(2) ϵ =

1− e
−
k × n

m


k

92



Chapter 9

Advanced Topics

9.1 Hardware and Data Models

The Turing Tax Extra Fun! 9.1.1

The additional cost/overhead (performance, hardware cost, energy) of universality/general purpose computing
in hardware.

Example Description
General Purpose CPU Jack of all trades, but a master of none.
Dedicated GPU, TPU Optimised for a very specific set of operations.

The turing tax & related tradeoffs of general purpose computing are discussed at length in Dr Paul Kelly’s
60001 - Advanced Computer Architecture Module.

Hardware Heterogeneity is Increasing

� The end of moore’s law the free lunch provided decades of performance improvements by dennard scaling is
ending.

� Dedicated accelerators for specific applications/operations can provide increased performance by avoiding/re-
ducing the turing tax

� As a result, systems need to be able to efficiently use many different accelerators.

GPU Definition 9.1.1

Graphics Processing Unit, designed for highly par-
allel operations on data (operating the same in-
structions across many threads in many warps).

TPU Definition 9.1.2

Tensor Processing Unit, developed by Google for
low precision arithmetic on tensors (matrices are
2D tensors)

ASIC Definition 9.1.3

Application-specific Integrated Circuit. An IC de-
signed to compute a specific application and hence
with virtually no associated turing tax overhead.

Near Memory Computing Definition 9.1.4

Accelerators built into/physically adjacent to main
memory to avoid the bandwidth limitations of
CPU memory access over a memory bus.

Field Programmable Gate Array (FPGA) Definition 9.1.5

An array of programmable blocks that can be configured to a specific design (described by a developer using
a hardware description language) to perform a specific algorithm.

Data Model Heterogeneity is Increasing
Many new data models have been developed to support specific types of application.

� Key value stores used to improve performance of distributed systems through caching.

� Graph based models for highly interconnected data (e.g social networks) that avoid the costs associated with
joins on very large relations

93



� Document based databases for flexibility & simplicity in storing data (e.g storing BSON objects in MongoDB
to support simple webapps)

Redis Extra Fun! 9.1.2

Redis is a popular in-memory key value store, of-
ten used as a cache but also usable as a key-value
database.

Memcached Extra Fun! 9.1.3

Memcached is a distributed key-value store de-
signed for caching. Usage is nicely explained in
this funny story.

RedisGraph Extra Fun! 9.1.4

A graph based database RedisGraph which uses adjacency matrices & smart linear algebra to achieve a
self-proclaimed title of fastest graph database.

Workload Heterogeneity is Increasing
Datasets are growing larger with more kinds of workload.

Analytics Transaction Processing Inference Data Cleaning Data Integration

� Data integration workloads are required for the large distributed data systems

� Data science related workloads needed at scale (cleaning, model training and inference)

9.2 CodeGen

A typical DBMS implementation converts queries to logical, then physical plans. The kernel then invokes operator
implementations specified in a query’s physical plan to process the query.

There are several unavoidable costs/limitations to optimisation:

� With volcano processing we must compose/stitch together operators at runtime, necessitating expensive virtual
calls.

� Inter-Operator microarchitectural optimisations (e.g inlining volcano operators) are not possible as the kernel
can only use operator implementations, not edit/optimise/restructure their code

Alternatively we could generate the code for operator implementations at query time, with all the information
available at that time.

94

https://redis.io/
https://github.com/memcached/memcached
https://github.com/memcached/memcached/wiki/TutorialCachingStory
https://redis.com/modules/redis-graph/


There are optimisations that require both data and hardware awareness, particularly relating to parallelism (needs
to understand data dependencies as well as the parallelism supported by hardware).

voodoo Definition 9.2.1

A Vector-Dataflow Language used as a unified algebra for code generating DBMS (original paper).

9.2.1 Vector Operations[
x1, x2, . . . , xn

]
+
[
y1, y2, . . . , yn

]
=

[
x1 + y1, x2 + y2, . . . , xn + yn

]
A single instruction/operation (e.g +) operating on multiple data.

� As each operation is independent, each can be performed in parallel.

� A very large vector can be partitioned and processed on multiple threads.

� To take advantage of this parallelism in a single thread, we can use vector extensions.

� Vector extensions include wider registers, and special instructions for operating on lanes of a vector register in
parallel.

For example element-wise sum over two tables (e.g previously joined in the plan).

CREATE TABLE numbers (x BIGINT, y BIGINT); /* ... */ ; SELECT (x + y) as z FROM numbers;

Naively we could generate some scalar code to perform the operation.

template<size_t n>

void element_sum_scalar(int64_t x[n], int64_t y[n], int64_t z[n]) {

for (auto i = 0; i < n; i++) z[i] = x[i] + y[i];

}

// Note: with optimisation on clang & gcc will automatically vectorize this

We could use multithreading.

95

https://www.cs.albany.edu/~jhh/courses/readings/pirk.pvldb16.pdf


template <size_t n>

void element_sum_threads(int64_t x[n], int64_t y[n], int64_t z[n]) {

//number of concurrent threads supported

const auto no_threads = std::thread::hardware_concurrency();

// round-up integer division to get elements computed per thread

const auto n_per_thread = ((n - 1) / no_threads) + 1;

std::vector<std::thread> threads;

for (auto index = 0; index < n; index += n_per_thread) {

threads.emplace_back([&, index] {

for (auto s = index; s < std::min(index + n_per_thread, n); s++)

z[s] = x[s] + y[s];

});

}

for (auto &t : threads) t.join();

}

Or we can use a vector extension we know is available on the hardware the system is running on, such as AVX-512
used here.

#include <immintrin.h> // intel intrinsics used to ensure we use 512 bit vector instructions

#include <type_traits> // using enable_if as this code only works for n that are multiples of 8

template<size_t n>

typename std::enable_if<n % 8 == 0, void>::type

element_sum_vec(int64_t x[n], int64_t y[n], int64_t z[n]) {

for (auto i = 0; i < n; i+=8) {

__m512i xs = _mm512_loadu_si512(&x[i]);

__m512i ys = _mm512_loadu_si512(&y[i]);

__m512i zs = _mm512_add_epi64(xs, ys);

_mm512_storeu_si512(&z[i], zs);

}

}

Given some call to element_sum_vec<2048>(x, y, z) we can compile:

g++ -O3 -mavx512f vectorisation.cpp # Compiled with mavx512f to let GCC use AVX-512 instructions

And extract the loop doing the summation:

# Arrays stack allocated

.element_sum_vec:

xor eax, eax

.Loop:

vmovdqu64 zmm1, ZMMWORD PTR [rsp+rax] # xs = x[i:i+8]

vpaddq zmm0, zmm1, ZMMWORD PTR [r13+0+rax] # zs = xs + y[i:i+8]

vmovdqu64 ZMMWORD PTR [rbx+rax], zmm0 # z[i:i+8] = zs

add rax, 64 # i += 8 * sizeof(int64_t)

cmp rax, 16384 # i != 2048 * sizeof(int64_t)

jne .Loop

ret

96



9.2.2 Data Flow

Voodoo expresses plans as a data-flow graph containing vector operations (which it can parallelise with multithreading,
SIMD or GPU).

9.3 Adaptive Indexing

9.3.1 Cracking

SELECT * FROM table WHERE x BETWEEN c1 AND c2; -- Given constants c1 and c2

Scan Linearly scan table, get entries.
Sorted Index Build a sorted index, maintain the index under writes, inserts & deletes. Use index to get

range efficiently.
Cracking Split/crack the table into several unsorted ranges, with the ranges in sorted order.

Cracking has been shown to significantly improve performance, as examined in the paper Database Cracking
(benchmarking cracking in monetDB).

97

https://stratos.seas.harvard.edu/files/IKM_CIDR07.pdf


”Cracking stuff Gromit!” Extra Fun! 9.3.1

� These slides cover the cracking implementation in monetDB.

� Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-Memory Column-Stores

9.3.2 Hoare Partitioning

The partitioning algorithm used in quicksort

� O(n) time complexity

� Does not require extra memory / partitions in-place.

namespace hoare {

// INV: sort_vec.size() > 0

template <typename T>

size_t partition(std::vector<T> &sort_vec, size_t start, size_t end) {

// get pivot

T pivot = sort_vec[start];

size_t count = 0;

98

https://homepages.cwi.nl/~mk/onderwijs/adt2009/lectures/lecture5.pdf
https://stratos.seas.harvard.edu/sites/scholar.harvard.edu/files/StochasticDatabaseCrackingPVLDB12.pdf


// determine where to partition / where to place pivot value

for (size_t i = start + 1; i < end; i++) {

if (sort_vec[i] <= pivot)

count++;

}

// swap pivot into place, will partition around pivot

size_t pivotIndex = start + count;

std::swap(sort_vec[pivotIndex], sort_vec[start]);

// start pointers i & j at ends of range

size_t i = start, j = end - 1;

// advance pointers, swap and partition

while (i < pivotIndex && j > pivotIndex) {

while (sort_vec[i] <= pivot)

i++;

while (sort_vec[j] > pivot)

j--;

if (i < pivotIndex && j >= pivotIndex) {

std::swap(sort_vec[i], sort_vec[j]);

i++;

j--;

}

}

return pivotIndex;

}

} // namespace hoare

Consider the following section from the algorithm.

while(sort_vec[i] <= pivot) i++;

A hot loop containing a conditional with low selectivity (on random data).

� we can employ an out-of-place algorithm that allows us to remove this control hazard

9.3.3 Predication

Predication Extra Fun! 9.3.2

The idea behind predication is to avoid control hazards, rather than branching to different instructions, just
conditionally apply instructions. Some architectures support this directly with predicated instructions, such
as IA64 (full predication) or ARM.

if (a > b) a += b;

cmp r0, r1

addlt r0, r0, r1

cmp r0, r1

ble dont_add

add r0, r0, r1

dont_add:

@ ...

In the below examples we predicate by removing a jump/branch, rather than using predicated instructions.

We can start with a basic out-of-place partition.

namespace out_of_place_cond {

// INV: input_vec.size() > 0

template <std::copy_constructible T>

size_t partition(const std::vector<T> &input_vec, std::vector<T> &output_vec,

size_t start, size_t end) {

99



const T &pivot = input_vec[(start + end) / 2];

size_t left_index = start;

size_t right_index = end - 1;

for (auto i = start; i < end; i++) {

if (input_vec[i] < pivot) {

output_vec[left_index] = input_vec[i];

left_index++;

} else {

output_vec[right_index] = input_vec[i];

right_index--;

}

}

return left_index;

}

} // namespace out_of_place_cond

Here the if (input_vec[i] < pivot) condition has low selectivity, and is part of the hot loop.

We can predicate this by always writing the input_vec[i], and incrementing the pivot indexes based on the condi-
tion.

namespace out_of_place_pred {

// INV: input_vec.size() > 0

template <std::copy_constructible T>

size_t partition(const std::vector<T> &input_vec, std::vector<T> &output_vec,

size_t start, size_t end) {

const T &pivot = input_vec[(start + end) / 2];

size_t left_index = start;

size_t right_index = end - 1;

for (auto i = start; i < end; i++) {

output_vec[left_index] = input_vec[i];

output_vec[right_index] = input_vec[i];

// increment using boolean, if not incremented, value is overwritten on

// the next iteration of the loop

left_index += input_vec[i] < pivot;

right_index -= input_vec[i] >= pivot;

}

return left_index;

}

} // namespace out_of_place_pred

9.3.4 Predicated Cracking

Cracking stuff! Extra Fun! 9.3.3

The algorithm presented here is from the paper Database Cracking: Fancy Scan, not Poor Man’s Sort!

namespace predicated_cracking {

constexpr bool USE_CONDITIONS = false;

// INV: sort_vec.size() > 0

template <typename T>

size_t partition(std::vector<T> &sort_vec, size_t start, size_t end) {

bool cmp = false;

100

https://core.ac.uk/download/pdf/301643658.pdf


size_t left_ptr = start;

size_t right_ptr = end - 1;

T active = sort_vec[left_ptr];

T backup = sort_vec[right_ptr];

T pivot = sort_vec[(start + end) / 2]; // somewhat arbitrary pivot selection

while (left_ptr < right_ptr) {

// write active

sort_vec[left_ptr] = active;

sort_vec[right_ptr] = active;

if constexpr (USE_CONDITIONS) {

if (pivot > active) {

left_ptr++;

active = sort_vec[left_ptr];

} else {

right_ptr--;

active = sort_vec[right_ptr];

}

} else {

// compare and write

cmp = pivot > active;

// advance cursor

left_ptr += cmp;

right_ptr -= 1 - cmp;

// backup phase

active = cmp * sort_vec[left_ptr] + (1 - cmp) * sort_vec[right_ptr];

}

// swap active

std::swap(active, backup);

}

sort_vec[left_ptr] = active;

return left_ptr;

}

} // namespace predicated_cracking

Conditional Understanding Extra Fun! 9.3.4

A python script in the included code for these notes can be used to generate apply and print steps of this
algorithm.

101



Chapter 10

Credit

Image Credit

Front Cover OpenAI Dall-E.

Content

Based on the excellent Data Processing Systems course taught by Dr Holger Pirk.

Includes content from the first year databases course 40007 by Dr Peter McBrien.

These notes were written by Oliver Killane.

102

https://www.doc.ic.ac.uk/~pjm/idb/

	Introduction
	Logistics
	SQL
	C++

	Data Management Systems
	Data Intensive Applications
	Data Management Systems
	Non-Functional Requirements
	Logical/Physical Data Model Separation
	Transactional Concurrency
	Read Phenomena
	Isolation levels
	Declarative Data Analysis


	Relational Algebra
	Relational Structures
	Preliminaries
	Nomenclatures
	Schemas

	Implementing Relational Algebra in C++
	Relation
	Project
	Select
	Cross Product / Cartesian
	Union
	Difference
	Group Aggregation
	Top-N


	Storage
	Database Management System Kernel
	Storage
	Buffer Manager
	Storage Manager
	Catalog
	Disk Storage


	Algorithms and Indices
	Sorting Algorithms (unassessed)
	Quicksort
	Merge Sort
	Heapsort
	Radix Sort
	Hybrid Sorts

	Joins
	Join Types
	Join Implementations
	Nested Loop Join
	Sort Merge Join
	Hash Join

	Hash Tables
	Hashing
	Bucket Hashmap (Separate Chaining)
	Probing Hashmap (Open Addressing)
	Partitioning
	Indexing
	Hash Indexes
	Bitmap Indexing
	B-Trees
	B+ Trees
	Foreign Key Indices


	Processing Models
	Motivation
	Volcano Processing
	Operators
	Pipelining
	Operations Calculations

	Bulk Processing
	By-Reference Bulk Processing
	Decomposed Bulk Processing


	Optimisation
	Motivation
	Query Optimisers vs Optimising Compilers
	Query Equivalence

	Peephole Transformations
	Avoiding Cycles
	Branches

	Classifying Optimisation
	Logical Optimisation
	Rule Based Logical Optimisation
	Cost Based Logical Optimisation

	Physical Optimisation
	Rule Based Physical Optimisation
	Cost Based Physical Optimisation

	SparkSQL

	Transactions
	SQL Transaction
	ACID Properties

	Histories
	Anomalies
	Isolation Levels
	Concurrency Schemes
	Serial Execution
	Two-Phase Locking (2PL)
	Timestamp Ordering
	Optimistic Concurrency Control (OCC)
	Multi-Version Concurrency Control (MVCC)


	Streams
	Motivation
	Push Operators
	Naive Implementation
	PushBack

	Time
	In-Order Processing
	Windows
	Aggregate Implementations
	Two Stacks Algorithm

	Stream Joins
	Handshake Join
	Symmetric Hash-Joins
	Bloom Filters


	Advanced Topics
	Hardware and Data Models
	CodeGen
	Vector Operations
	Data Flow

	Adaptive Indexing
	Cracking
	Hoare Partitioning
	Predication
	Predicated Cracking


	Credit

