#include <limits.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <derive-c/core/prelude.h>
#include <derive-c/alloc/staticbump/template.h>
#include <derive-c/container/vector/dynamic/template.h>
Go to the source code of this file.
◆ ALLOC
◆ CAPACITY
◆ ITEM
◆ MAX_UP_TO
◆ NAME [1/2]
◆ NAME [2/2]
◆ compute()
| void compute |
( |
sieve_vec * | sieve | ) |
|
- Examples
- complex/prime_sieve.c.
Definition at line 69 of file prime_sieve.c.
69 {
70 size_t size = sieve_vec_size(sieve);
72 printf(
"Sieve size: %zu, sqrt: %zu\n",
size, sqrt);
73 for (size_t factor = 2; factor <= sqrt; factor++) {
74 for (
size_t index = factor * 2; index <
size; index += factor) {
75 printf("Marking %zu as not prime (factor: %zu)\n", index, factor);
76 *sieve_vec_write(sieve, index) = true;
77 }
78 }
79}
static INDEX_TYPE size(SELF const *self)
size_t sqrt_size_t(size_t n)
◆ display()
| void display |
( |
sieve_vec const * | sieve | ) |
|
- Examples
- complex/prime_sieve.c.
Definition at line 53 of file prime_sieve.c.
53 {
54 sieve_vec_iter_const iter = sieve_vec_get_iter_const(sieve);
55
56 sieve_vec_iter_const_next(&iter);
57 sieve_vec_iter_const_next(&iter);
58 size_t index = 2;
59
60 bool const* is_not_prime;
61 while ((is_not_prime = sieve_vec_iter_const_next(&iter))) {
62 if (!*is_not_prime) {
63 printf("%zu is prime\n", index);
64 }
65 index++;
66 }
67}
◆ main()
Definition at line 81 of file prime_sieve.c.
81 {
82 size_t up_to = 28;
84 printf("Listing primes up to: %zu\n", up_to);
85 bump_alloc_buffer buf;
86 bump_alloc alloc = bump_alloc_new(&buf);
87 sieve_vec values = sieve_vec_new_with_defaults(up_to, false, &alloc);
90 sieve_vec_delete(&values);
91}
void display(sieve_vec const *sieve)
void compute(sieve_vec *sieve)
◆ sqrt_size_t()
| size_t sqrt_size_t |
( |
size_t | n | ) |
|
- Examples
- complex/prime_sieve.c.
Definition at line 26 of file prime_sieve.c.
26 {
27 if (n == 0 || n == 1) {
28 return n;
29 }
30 size_t left = 1;
31 size_t right = n;
32 size_t mid;
33 size_t result = 0;
34 while (left <= right) {
35 mid = left + (right - left) / 2;
36 size_t square = mid * mid;
37
38 if (square == n) {
39 return mid;
40 }
41
42 if (square < n) {
43 result = mid;
44 left = mid + 1;
45 } else {
46 right = mid - 1;
47 }
48 }
49
50 return result;
51}